A Reproduced Copy

OF

)

(NASA-CR-125887) SNAP: A CONMPUTER PROGRAHN
FOR GENERATING SYHBOLIC NETWORK FUNCTIONS
- P.H. Lin, et al (Purdue Univ.) Aug. 1970
CSCL (9B
G3/1¢ 15:311

125 p
: (NASA CR ORTMX UK AU NUMDBEK]) - \SRIENTWR) J

L3

N72-20226

Reproduced for NASA
| by the
NASA scientific and Technical Information Facility

* Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Co
Springfield VA 22'??]8“:0

FFNo 672 Aug 65

TR—-EE-70-16

SNAP
"~ A COMPUTER PROGRAM FOR GENERATING
SYMBOLIC NETWORK FUNCTIONS

P. M, Lin
G. E. Alderson

School of Electrical Engineering
Purdue University
Lafayette, Indiana

Supported by
Hational Aeronautics and Space Administration
Grant NGL 15-005-021

TABLE OF COMTENIS

I * INTRODUCTION . s e o ‘e e e e o o o & o s o o

I1. A GENERAL DISCUSSION OF THE BASIC ALGORITHMS . « ¢ «

I1-1.
II"'Z.
11“3.
11"4'

III.
III"lo

11I-2.

Formulating the Signal-Flow Graph (SFG) « « « ¢ « « &
a, Data Required + ¢ ¢ o o ¢ o o o ¢ o ¢« o o ¢ o o @
b, Finding a Tree =« « o« o ¢ ¢ o o ¢ ¢ « +s o o ¢ o &
c. Rules for Formulating the Compact SFG » « + « » »
d. The Gain Formula for '"Closed" SFG ¢« « o « « « + &
Manipulating SFG Branch Weights « o o + o o ¢ o ¢ o« &
Generating First Order Loops =« « ¢ « « ¢ o ¢ o o o o
a. General Description ¢ « ¢ ¢ o ¢ o o ¢ o o o o o o

- b. A detailed Description of the Path-Finding Algorithm

Generating Nontouching Loops of Order Two or More « « ¢ «

USER' S GUIDE e e o s o o @ * a2 o e e o o . e o e o o .

Information Needed by User « o« ¢ ¢« ¢ o o o ¢ o ¢« o &
“Appendix A (A Sorting Technique for Handling Multi-
Input, Multi-Output Networks) =« » « « &
Appendix B (A Brief List of Limitations on the
Size and Type of Network Allowed) .+ « .
Appendix C (Selecting a "Good" Tree) o « « o ¢ o o &
Modifying the Diménsion of Arrays =« ¢ « « o« o o o &

IV, PROGRAMMER'S GUIDE =« « « ¢ o« ¢ o o o o o o o s s o o

IV-l .
v-2,
V-3,

Definitions . ¢ o e o e & e ¢ o o . ¢« o e o o e o .
Flow Charts « o o o o o o s ¢ o o o o ¢ s o s o o o o
Prograrﬂ Listing ¢ ¢ ¢ & & e e & & ® 8 ® 6 o & o e e =

REFERENCES * e @ * e o ® o @ o s e @ * o o e . .

.

36

39
40
42

47
47
50
100

124

I. INTRODUCTION

The majority of computer aided circuit analysis programs belong to the

class of ''numerical programs', that is, the output is some numerical value.

*
At the time of our research a few programs, most notably ANPI(S) , NASAP(g),

and CORNAP(IO)

could generate network functions as rational functions of s
but did not allow the value of any element to be left in symbol form. The
research project reported here represents, we believe, the first effort to

generate symbolic network functions. By a symbolic network function we mean

Vout. Vout Iout
Vv

3 b4 ? or
in Yin Vin Lin
following types:

t as a ratio of two polynomials of one of the

(1) all network element values are represented by symbols (the symbols need

not all be different)
Vout = szLRC
Vv 2 2
in 8 2LRC + s(L+R°C) + R

Examples:

Vout ZYR
Vv 2
in 2ZYR+ Z + R'Y + R

(2) some element values are specified numerically, some symbolically,

Vout .SZR
Example: = 3

Vin s%2R + s(.5x10

8

+150R%) + .75x10°R

or

(3) all element values are given numerically,

v 2
—out s
Example: v =

in 292 + 2x1048 + .75x108

- There are many reasons why one may be interested in totally or partially
symbolic network functions. The following presents a few of the more important
ones.,

(1) 1Insight. To illustrate the added "insight" symbolic programs can provide

(2)

in comparison to numerical type programs, suppose we have been asked to
verify that the network in Fig. 1 is a negative impedance converter for

large B, i.e.,

2, (s) -2, (s) as B4 - W
I
F----=—=—=7 [~-=~--< =
| WA | A
E R o L R | .
i { C P CJ | L
[1l Pl f{ [2
(Y ARl B WS | S 4
Z)= £,6) Z,(s] Z (- ZR; R

%

Figure 1

To verify (1) with some dégree of certainty using a numerical program
would require evaluating Zin(s) (and ZL(s)) for many different values of
B and frequency w, a time consﬁming process at best sin;e most programs
must completely re-evaluate the network response for every relétively
large-change in parametér values. Furthermore, the resulting verification
would only be valid for the particular structure and component values
chosen for ZL(s). With a symbolic program, one computer run gives thg
symbolic transfer function

2,(8) = 2,(8) (D)
from which (1) follows immediately.
Error Control., To demonstrate how a symbolic program can be used to

(1)

effectively control round-off error, consider the differential amplifier

shown in Figures 1 and 2 of Section II-1l., If network branches 1, 2, 5;
and 11 are chosen as the treé for deriving the signal-flow graph (SFG),
theq the set of nontouching loops (all orders with sign attached)
which belbng to the numerator of the low frequency transfer function

Iout

vV, .
in s=0

]
o=

is given by

R1R3A2 -R1R3A1 R1R3A1 -R1A1 -R3R1A2 R1A2)

] ’ ’]

(e)2R2’ (RE)ZR2 (RE)?R2 RER2 (RE)ZR2 = RER2

and the corresponding set for the denominator is given by

Rl Rl R3 R3 RIR3 RIR3 RIR3 RI1R3
R2° R2’ RE’ RE’ R2RE’ R2RE’ R2RE’ R2RE

Letting A2=Al, R1=5K, R2=15K, R3=10K, and RE=25, evaluate N and A by

summing the terms in the order given in the above sets keeping each
number generated to 8 significant digits., Then

N = A1(5.3333333-5.3333333+5.3333333-.013333333-5,3333333+0.13333333]

= 3.3x10 °A1
nd A= 1335
I -8
out _ 3.3x10
Thus 3~ = TT1335 Al
in
3=0

which_is incorrect since.NEO. Although the above transfer function was
derived using SFG theory, round-off errors which cause erroneous results
can éccur in any computer program restricted to numerical evaluation,

and are generally very difficult to predict or control. Because round-off
error enhancement in the evaluation of network functions often occurs

as a result of widely separated values of some of the network elements,

one method of error control would be to leave such element values in

(3)

(4)

(5)

symbolic form. This technique can be applied to the above example by
noting that RE should be kept as a symbol since its value is considerably

less than the other resistance values. Thus, keeping RE as a symbol and

'refevaluating N gives

3333.3333 3333.3333 | 3333.3333 _ .33333333

N=Al - +
2 ' 2 2 RE
(RE) (RE) (RE)
3333.3333 .33333333]= o
) 2 RE.
(RE)
That is,
out =0
Vin
. 520

Sensitivity Analysis. Sensitivity of the network function to changes in
a particular network parameter can be found using a symbolic program by

keeping this parameter as a symbol and then performing the required

~differentiation. Although there exist powerful numerical techniques for

sensitivity analysis, the above procedure using a symbolic program has

the particularly desirable feature of being less susceptible to rouﬁd-off
errors,

Parameter Variation. Suppose we wanted to evaluate the network function
for many different values of one or more network parameters. Using a
symbolic program, we could leave these parameters in symbol form and
then efficiently and accurately perform the large number of required
evaluations on the resulting symbolic network function. On the other

hand numerical programs now available must re-derive the transfer function
for every reiatively large parameter change.

Iterative Piecewise Linear Analysis of Resistive Nonlinear Networks.(ll)

Part of this powerful analysis technique requires the solution of a

resistive linear network where some resistances and some d-c sources
are kept in symbol form, | |
The primary objective* of this project has been the development of some
new or improved concepts needed to make a symbolic network analysis program
efficient with respect to program storage and execution time. The project
culminated in the prégram SNAP (Symbolic Network Aqalysis ?rogram) which
finds symbolic network functions for networks containing R, L, and C type
elements and all four types of controlled sources. SNAP contains the following
unique features:. | |
(1) The extensive use of a path-findihg algorithm in place of matrix operations,
(2) Efficient techniques for finding all loops of the SFG and for enumerating
all higher order loops,
(3) The use of the "compact signal-flow graph" instead of the "primitive
signal-flow graph", and.
(4) A simple coding technique which is used
(a) manipulate symbols thereby allowing the complete program to be
writtén in Fortran (another important aspect of the coding scheme
is that 1t permits repeated symbols to be treated as one symbol), and
(b) determine whether or not loop sets touch in the algorithm for
enumerating higher order loops.
New teéhniques for handling multi-inputs and multi-outputs are also presented
in this report although they have not yet been incorporated into the program

SNAP.

* .
At about the same time the:results of this project were disseminated,(3) another
symbolic program(l) (by coincidence also called SNAP) whose primary concern is
the on~line use for design purposes made its appearance.

I1. A GENERAL DISCUSSION OF THE BASIC ALGORITHHS

I1-1. Forﬁulatiqg;;he Signal-Flow Graph (SFG)

a. Date Required

A SFG is generated by SNAP (Symbolic Network Analysis Program) from data
specifying the topological structure of the network, the input-output variables,
and the chavacteristics of each network branch. The network topology 18.
described by

(#) A unique number for each branch, and
(b) the 1niti§1 and terminal nodes of each branch as determined by the
assigned current direction.
The input to the neﬁvork mmst_be a single independent voltage otr current Ssource
and the output requested must be the voltage or current associated with a
network branch or the voltage between any two nodes of tﬁe networkJ*-Finally,
each branch is characterized by
(a) a symbol which specifies its type, i.e.,
passive branches: R, G, L, C, Y, Z
control sources: VV, VC, CV, CC
independent sources: E, 1
(b) a symbol representihg the branch name togefher with the branch value
if specified, and
(c) the branch number of the control (for dependent éources only)

As an example, consider the network given below (from a paper by A. DeMari(l)).

%* ‘ :
Refer to Appendix A of section III-1 for a discussion on how to handle
multi-inputs and multi-outputs.

J:C ?RI‘E}K

Rl = 5K
R2=15K
LA
Tour)
Al R 7 A2
RE =25 " Qy / RE=25
Vin
'%RssmK
-10 .
Figure 1

Table 1 (Network Data)

Branch Branch Initial Terminal Symbol value Control

Type Number Node Node

E 1 2 1 3

R 2 1 3 Rl = 5x10

c 3 1 3 c 3

R 5 1 4 Rl = 5x10

C 4 1 4 C 3

R 6 3 4 R2 = 15x10

cC 7 3 2 Al ' 10
cc 8 4 2 A2 9
R 9 2 S RE = 25

R 10 2 5 RE = 25 3

R 11 5 1 R3 = 10x10

b. Finding & Tree

The formulation of a SFG starts with the choice of a network tree. The
selection of network branches to be used in the tree is made as follows:
Independent voltage sources and controlled voltage sources are the first ones
to be uged. Then come the passive RLC elements in any order. In choosing the
(J+1)th branch, the undirected graph formed by the J branches already selected
is tested to determine whether a path exists between the two terminal nodes
of the (J+1)th branch. If so, the branch under consideration is disqualified.

I1f not, the (J+1)th branch is added to the tree. Let n be the number of nodes

of the network graph. Qhen n-1 branches are successfully chéaen by the sbhove
process, we have obtained a trece.

As an example, consider the network ofAFig. 2., if, following the selection
of the voltage source, the passive branches are examined in the order by which

they are listed, the tree shown in Fig. 3 results

Tree branches:
b,=1,b, =2 ,b, =5,b, =9

1 2 3 4
5 Links:
_ 5 A ‘i =3, 52 = 4 , 53 = 6, %4 = 7
" o) It 4 =8, 8 =10, 4 =11
5’7
\ v
7 8
10,
?
Figure 3

It is important to note that the complexity of the SFG and consequently
the time required to evaluate the transfer function depends on the tree
(2)

selected. A brief summary of the rules for choosing a '"good" tree is

given in Appendix C at the end of Section III-1.

c. Rulegs for Formulating the Compact SFG

A "compact‘SFG" is a signal-flow graph whose node variables consist only
of tree branch voltages and link currents except when additional nodes are
needed for control sources or for the output variable. This type of SFG
can be more efficiently evaluated than the so-called primitive SFG which
contains one node for the branch voltage and another for thé branch current,

The compact SFG is constructed accoxrding to the following rules: (An
example as derived from Fig. 2, Fig. 3, and Table 1 is given in Fig. 4).

Rule (1): For each link Bk’ the unique fundamental circuit C

K contaiping

-

| -5 %|0® |
Vo 5%108 17
I - °
: S(: 55)<|()3
|
15 X103 - v,

-5 %10%

¢
15%103
< <
5%10% Ig
-5x10° .
Figure 4: SFG
Table 2 (SFG DATA)
Initial Texminal Exponent Branch Branch
Node - Node of s Value Symbol _
6 1 0 FB ‘
2 3 1 1 c
3 2 0 -5x10° -
5 4 1 1 c
4 5 0 -5x10° -
2 6 0 = -
15x10
6 2 0 - 5%10 -
5 6 0 1 3 -
15x10

6 5 0 ~5%10" -
10 7 0 1 Al

2 0 5x103 -
9 12 0 .04 -
12 8 0 1 A2

5 0 5x10° -
9 10 0 .04 -
10 9 0 25 -
9 11 0 -107% -
11 9 0 25 -
1 11 0 1074 -

-10-

branches bi’ i=1,2,...,m {8 found. Two sets of SFG branches can then be created.

Set (a): For each passive branch in the tree branch set bi’ i=1,2,...,m,

by

weight equal to the impedance of branch bi’ prefixed with the proper

a directed branch in the SFG is formed from node Izk to node V with

sign (pogitive, 1f the directions of ﬂk and b, concur in Ck’ and negative

i
otherwise).

Set (b): 1If the link tk ig a passive branch, a directed branch in the
SFG is formed from each node V. , i=1,2,...,m, to nodé Izk, having weight
equal to the admittance of linkiﬂk, prefixed with the proper sign

concur in Ck’ positive other-

(negative, if the directions of &k and b1

wige).
Rule (2): 1If any of the four types of controlled sources are present, a
directed branch is created in the SFG from the controlling variable to the
controlled scurce, having weight equal to the constant of proportionality
(gm, beta, etc.). If the controlling variable is a link voltage or a tree

branch current, one more node is added to the SFG to represent this controlling

variable X (node X,, in Fig. 4 is a node of this type). X is then expressed

12
in terms of the tree branch voltage or link current through a simple lmmittance

relationship.

Rule (3): 1If the desired output Y is neither a tree branch voltage nor a
link cﬁrrent, then one node is added to the SFG to represént Y. Y is then
expressed Iin terms of tree branch voltages or in terms of a link current
through a sfimple immittance relationship.

Rule (4): Finally, the SFG is "closed" by adding a branch with a symbolic

weight (FB), directed from the output to the input node.

-11-

d. The Gain Formula for "Closed" SFG(é)

The purpose for introducing the closed SFG is because only all orders
of nonrtouchiﬁg loops need be found as opposed to the evaluation of Mason's
formula which required enumerating certain paths as well as loops.

To derive the gain expression for the closed SFG consider first Mason's

equation for the transfer function.

m
X Z PiAi
Tn-—g-::———-—-——-ial
Xi A

where

A=1+ E(--l)jZLk 3 is the determinant of the SFG
h| k™

Lk 3 is the product of the transmittances cf the kth
?

set of non-intersecting

loops of orxder j.

Pi 1s the transmittance product of the ith path between Xi and Xo

A1 is the partial determinant obtained from A after removal of all
loops intersecting the ith path between Xi and Xo.

Let A.c be the determinant of the closed SFG. It is then noted that since

.

i34=1 is the set of all paths from X

4 to XB, the loops present in the

closed SFG not present in the original SFG will be precisely {(FB)Pi}Tnl

where FB is the symbol assigned to the added branch. Further, since the

path FB contains only nodes X, and Xo which, in turn, are present in every

i

path P i=1,2,...,m, it follows that the non-intersecting loop combinations

i’
that do not touch the loops (FB)Pi, i=1,2,...,m will be precisely those

combinations which do not touch the path P {=1,2,...,m. It follows that

i’

m
Ac =A(FB) z PiAi + A
i=1
Thus, the transfer function can be found by simply sorting the terms of the

determinant of the closed SFG.

-12-

"1I-2. Manipulating SFG Branch Weights

Each branch weight in the SFG is of the form
Constant ° Symbol &"
If an arbitrary branch has an initial node Xi and a final node xf, then the
three parameters
C(Xi,Xf) s constant
S(Xi,Xf) = gymbol

and E(Xi,Xf) = exponent of g

completely define the weight of the branch. After a loop or a set of nontouching
loops has been found in the SFG, say by some path-fin&ing technique, it is
desirable to combine the weight parameters of each branch in the loop set

t§ form a2 composite loop set weight. The lbop set constant may be easily

formed by taking the product of the constants associated with each branch.
-Similarly, the loop set exponent parasmeter is readily found by summing the
exponents assigned to each branch. However, because computerﬁ are not
particularly adept at symbol wmanipulation, it is8 inefficient with respect to
both time and storage to form directly a composite loop set symbol. A much '
better technique is to convert each branch symbol into a numeric code., These
codes are assigned to the SFG branches as follows: Each distinct sywmbol 1.
the SFG is sfored_in the array S5(j) and asgigned a code Bj vhere B 18 some
base BG{Z,Q,...,Zm]. Now for an arbitrary SFG branch having imitial node X

i

and final node X_ which contains the symbol S(n), the code

£

n
K(Xi,xf) B

i3 assigned.

-13-

The real value of this coding technique stems from tﬁe fact that the compos-
ite loop set code formed by summing the codes representing the individual
branch Symbbls can be uniquely decoded provided the number of identical
symbols combined into cny code {s less than B.

As an example of the above concepts for manipulating the SFG branch

weights, refer to the SFG shown in Fig. 4. Consider, {n particular, the
loop defined by the node sequences

Vz - I3 - V2 and Vz - 15 - Vz

Then
composite loop set comstant = (-52103)(1)(-5x103)(1)

= 25x10°

and
composite loop set s power = 0+ 1 +0+1=2
To find the loop set code, an array of distinct symbols of the SFG and their

corresponding codes rmst be set up.

no symbol <> 0
S(1) = FB <——-->l4o
S5(2) = C <——>41

S(3) =A1 <> 42

S(4) mA2 <—> 43
NHote that because there will be at most two identical symbols in any code, the
base 4 was chosen., Using the above codes gives
composite get éode = K(V2,13) + K(IB’VZ)
f K(VA’IS) + K(IS’Va)
=424+ 0+0+ 41t
= 8
Now to decode this number, say in the output, we wauld.wtite
8 = 204"
= (5(2))2

-Cz S .

“ 14

vhich ig indeed the symbol associated with the loop immittance product. The
above coding schene for manipulating sywbols is easily adapted to the computer
by incorporating the masking operation .AWD. . To determine the number of
S(1) type symbols contained in a given code, the .AND. operation is applied
to the code and B-1. 1In general, the number of S(J) symbols is found by
dividing (using integer divigion so as to truncate the remainder) the code
used to determine the number of S(J-1) symbols by B and then applying the
.AND, operation. For example, consider the loop set previously discussed.
loop set code = 8 = (000000000100)2
B~l=3= (000000000011)2
(loop set code).AND,.(B-1) = 8.AND.3 v
= 0
Thus, the symbol S(1) = FB is not present. Now divide the loop code by B
and repeat the above procedure
new code = % = 2
(new code) .AXD,(B-1) = 2.AND.3
= (000000000010)2
= 2 '
This implies C is contained in the code 8 and that its exponent ia’2,_i.e.
CZ. The process stops when the code i{s reduced to zero.
Each loop set (of any order) contributes to a term in the network function.
As each loop set (of any oxder) is generated and coded, it {s compared with
‘existing terms. If a term with the same symbol code and power of s exists,
then the constant of the term is updated by adding to it the constant of the
new loop set. Otherwise, a new term 18 crecated. Kote that the above process

is an important step towvards reducing the storage requirements.

~-15~

After all loop sets have been found, the transfer function is complete,
and {t remains only to tranaform the symbol code of esch term f{anto its corres-

ponding symbol set by the .AND. operation previously described.

-16-

1I-3. Generating First Order Loops

a, General Description

Let the nodes of the SFG be labelled 1,2,...,N. All first order loops which
contain node J (J=1 initially)can be found by conceptually splitting node J into two
nodes, one node containing all incoming branch and the other containing all
outgoing branches, and then enumerating all paths between these two nodes.

All branches going into node J are then removed and the process repeated for
node J+1. Clearly, this procedure will produce all circuits with no dupli-
cations, _

The problem of efficiently finding all circuits now becoﬁes one of finding
paths. "The path-finding algorithm utilized by SNAP is based on a routing |
technique which conceptually resembles that proposed by Kroft(s). However,
because our ultimate objective is a flexible user-oriented program, we have
chosen to use FORTRAN instead of SNOBOL as Kroft did. A general description
of the concepts contained in the algorithm will be given here in addition to
a rigorous step-by-step description presented at the end of this section,

Consider the SFG given in Fig. 4. The topological structure of the SFG
can be completely described by the following routing table where the entries
in the Jth row are the set of all nodes of distance one from node J. Note
that the entries of each row are made to decrease as the column subscript
M increases. This facilitates modifying the table after all paths through
a particular nodé, say node J, have been found because only the right most
non-zero entry of each row must be tested, i.e. if that entry equals J, it
is a set to zero. As an eXamﬁle in using the routing table, the following
two circuits can easily be shown to compose the complete set of circuits
containing node 1.

1-11-9-12-8-5-6-1

1-1 -9-10-7-2-6-1

-17-

1{11

2l 6 3

3| 2

4] s

ste 4

6l 5 21
RGILW = L],

8f s

9]12 11 10

10l 9 7

1] 9

12| 8

Routing Table
A particularly important feature of the path-finding algorithm is the
.method by which each new node generated from the routing table must be tested
to prevent loops\from being formed. Rather than comparing the prospective
node to each node already in the path, it is much more efficient to define
the function |

¢1 1f I 1s contained in the path node sequence

K1) = 0 1f I is not contained in the path node sequence

on which only one logic test need be made.
Additional insight may be obtained by viewing the path-finding technique
graphically. That is, the process by which paths are generated can be

observed by applying the following two rules directly to the SFG.

(1) Let node J be the last node added to the path node éequence (initially
J = input node). To select the next node, traverse that branch
connected to node J that goes to the highest numbered node satisfying

both the following requirements:

L
-§ 8-
a. we did not just back up from this node while applying rule 2,

and
b. this node is not included in the path noae sequence.
Repeat this process until the output node is reached (then store
the node sequence and go to rule 2) or until no new node can be
found the satisfies (a) and (b) (then go to rule 2)
(2) Back up along the peth just found (this is elways possible unless
wve are at the input nqde in which case all paths have been found)

until a new route can be taken according to rule 1.

> 2 7

W
4
A

4 ing fial
and Ferndaal pede

—

Figure 5
The heavy lines of Fig; 5 show the path which results from applying rule 1
vhen node 1 ie considered both the initial and terminal node. Gemnerating
a second path requires backtracking to node 9, then continuing the sequence
10-7-2-6-1. Note that the above graphical technique for liacing all paths can
be helpful when solving problems by hand. |

b. A Detailed Description of the Path-Finding Algorithm(3)

Algorithm Pf*(Path-findiqgl: This algorithm finds &ll paths between two

nodes of a directed graph (without parallel edges) whose nodes are labelled

1,2,...,8. The only modification necessary to adapt the algorithm to finding

*The format used to describe the path-finding algorithm follows the style of
Knuth(6), '

-19-

all circuit§ thru node L 18 to set I < L where L and I'are defined below.
Notations: | |

I: 1Initial path node

L: Last path node

N: Number of nodes in graph

EJ: Number of branches leaving node J
R(J,HM): Routing table

CJ: Column counter for the Jth row of the table R
P(V,w): The Vt:h node in the node sequence of path W
Ug: Number of nodes in path W |

F(K): A function used to test whether node K {s repéated, and
whether the last node 1is reached.
PFl. ‘(Preliminary)
Set R(J,l),_R(J,Z),...,R(J,EJ) to the group of EJ nodes of distance

one from node J. When using the algorithm to find circuit, made

the entries of each row decrease és M increases.
-1 for M = EJ+1 and J=1

0 for M= EJ+1 and J#1

) 1 for K=1
Set F(K) <—<« 0 for K=J and J#I,L
C

Set R(J,M) <—

-1 for K=L

Set 3 <— 1 for J=1,2,...,N

Set W<e— 1, V<— 2, J < I, P(1,1) «—— I

(Find the next node)

]
'
N

Set P(V,W) <— R(J,C,)

acd
o |
w

(Test R)

< 0 stop; all paths have been found
IF R(J,CJ) = 0 set F(J) <— 0, go to step PF6
>0 go to step PF4

-20-

~ PF4. (Test F)

< 0 path completed; go to step PF7
IF F[R(J,CJ)} =0 go to step PF5 ‘

> 0 set CJ G CJ+1; go to step PF2

PF5. (Prepare for next node)

Set J <— P(V,W), F(J) <— 1, V <— W1, go to step PF2

F6. (Back steb)

Set C; <— 1, J <— P(V-2,W), C; <— C#1, V <— V-1, go to step PF2

J
PF7. (Finish path)

Set C; <— C.+1, P(K,W1) <— P(K,W), K=1,2,...,Uw-1', W <— W+l, go to

- step PF2,

-21-

%
I11-4. Generating NHontouching Loops of Order Two or More

Preliminary results from SNAP indicate that of the following sub-
progréms, (1) finding a SFG, (2) coding and de-coding, (3) enumerating first
order loops, and (4) finding all higher order nontouching loops, the last
will generally require the most time unless the network contains many distinct
symbols in which case subprogram (2) may dominate. It is therefore necessary
to exercise considerable care in developing an algorithm for finding all
orders of nontouching loops.

In general, to find loop sets of all orders, some comparison between
the node sequences of the different loops must be made. A brute force

"~ technique is simply to store all the node sequences of the first order loops
and to find nontouching loops by direct comparison of the nodes contained
in ﬁhe loops. Of course, storage is also needed to indicate the loops
contained in some of the higher ordef combinations, but this storage is
necessary even in the more efficient techniques which follow.

The above method is improved considerably if instead of directly compafing
the nodes of loop A and loop B to determine i{f they touch, a function F(I)
is defined as

1 16 {nodes in loop A}

F(I) = 0 otherwisge

and then tested as follows:

{-0 all Je {nodes in loop B} => loops do not touch
If F(J) =1 any Je {nodes in loop B} => loops touch

For those computers which can accomodate the .AND. operation (or

equivalent), the following coding technique reduces the number of logic

= :
Although the program was correct, the algorithm was incorrectly described in
reference (3).

~22~

compar{sons needed to determine if two loops touch to one and, perhaps
what 1s even more important, requires only a single code be stored for
each first order loop instead of the complete node sequence. As each fifét
“order loop is generated, it is assigned an integer code whose binary repre-
sentation shows the set of nodes in the loop. For example, if loop A
contains the nodes {11; 9,12, 8,5,6, 1} and loop B contains the nodes {2,6},
then the codes are

A= (110110110001)2 = 3505

B = (000000100010)2 = 34
To determine whether the two loops touch or not, the masking operation .AND.
is used. Thus, .

(A) .AND, (B) = (000000100000)2 £0
The result is not zero, indicating that loops A and B touch.

Using the coding scheme the complete set of nontouching pairs of loops is
found and stored in the one dimension array N. Let n = number of first
order of loops. Then ‘

N(L),N(2), ... ,NTB(1) J,N[BC1)+1], ... N[B(2) ,N[R(2)+1], ..., N[B(3)],

N[P(3)+13,...,N[P(n -1)],N[P(n -1)+1],...,N[P(a)]} '
1s the coﬁplete set of nontouching pairs of loops, where the

[N(l),N(Z),...,N[P(l)]} = get of loops numbered higher than 1 which do.not

touch loop 1. '

{n(p(1)+17,ulP(1)+2],...,N[P(2)]} = set of loops numbered higher than 2
. which do not touch loop 2.

{N[P(i-1)+1];N[P(i-1)+27,...,N[P(i)]} = get of loops nuwbered higher than i
. vhich do not touch loop 1

Nfp(n ~1)+1),8[P(n -1)+2],...,N[P(n)]} = empty set because there are no
loope pumbered higher than n .

Note that the array P is simply used to partition the array N such that the set

{N[P(i-1)+1],N[P(1-1)+2],...,N[P(i)]} does not touch loop {i.

-23-

Example: (Consider the SFG of Fig. 4)
The first order loops are

loop node sequence

1-11-9-12-8-5-6-1

" 1-11-9-10-7-2-6-1
2-6-2
2-3-2
4-5-4
5-6-5
9-11-9
9-10-9

R N O 1D WN

To find the array of nontouching pairs P, SNAP codes the dbove loops snd
proceeds to use thé +AND. operator. The results are

N = {4,5,5,7,8,5,6,7,8,7,8,7,8}
and P(1)=1, P(2)=2, P(3)=5, P(4)=9, P(S)ﬁ]l P(6)=13, P(7)~13, P(8)=13,

To systematically continue the process, an array S is created from which
all higher order leop sets (2 or more) not touching loop £ can be found. By

incrementing £ from 1 to n, all higher order loops will then be enumerated.

3 -

Let .
s(1,1)s(1,2)...sl1,u¢1)] . . . sf1,3(1)J,0,.
s = S(2,1)8(2,2)... _ sl2,u()+1)...8(2,3(2)),0,...
s(K,i)S(K,z)...s[x,u(%)] e oo 8K, J® J,0,...
where S(1,1) = N[P(L-1)+1j

it

$(1,2) = N[p(L-1)+2]

s(1,3(1)] = n[p(L))

~24a~

and vhere the entires (loop numbers) of row M(M > 2) are those loops id the set
{sTu-1,u(n-1)+1],s[M-1,U(M-1)+2],...,5[M-1,3(x-1)]}
‘which do not touch the loop s(M-1,U(M-1)).
The arrows shown in the array S given above are referred to aa."pointers“.
Kote that ﬁ(J) indicates.the position of "pointer" of the th row. Example:
" U(3) = 5 means the pointer of row 3 is currently located at the 5th column,
The procedure for finding all higher order loop combinations is given in

the following flow chart:

Preliminaxy
n: number of first order leops
L: first ovder loop umndexr consideration
U(i): pointer position for row i in S
J(1): number of loops im row i of S
: the row counter indicating that row K of S ig being
scanned to genexrate a set of K+2 order loops
Set £ =0
U(i) =1 1 =1,2,...,n
J(1) =0 i =1,2,...,n

4 v Set L= £+ 1
‘Have all first order loops been used Yes
to generate higher-ordexr combinations? > Stop
f.e. Is £ = n? (all higher order
loops have been
found)
No

Insert into row 1 of S the numbers cor-
responding to the loops numbered higher
than £ which do not touch loop £.
. Set K=1
J(1) = number of these loops

i/
=1 / Test
| LW >

>1
Y ')

'qu‘ ..

1

j_

Generate row K+l of S as follows: Insert those
loops of the set {S[X,U(K)+1],...,s[K,J(K)]}

_that do not touch loop S[K,U(K)] into row K+l

of S. Set J(K+1) = number of these loops. When

a nevw element, say S(K+1,X), is generated, the
weight parameters corresponding to the symbol code,

constant term, and power of 8 are stored (or when
possible combined with other similar type terms)
for the loop set loop

loop £ - loop S{1,U(1)]-...*loop S(K+1,X)

< TEST > 1
J(K+1) K=K+1

<1
Can we generate row K+l \\V
U(K§:;(K)+1 Yes // by incrementing the pointer
\of row K? 1i.e. Is U(K)<JI(K)-1? /\
No
‘ : _Set
2 : U(K)=1
A No Can we back up one row? Yes J(K)=0

-25-

Example:
From the éreceding example,
N= {4,5,5,7,8,5,6,7,8,7,8,7,8}
“and P(1) = 1, B(2) = 2, B(3) = 5, B(4) = 9, B(S) = 11
P(6) = 13, P(7) = 13, P(8) = 13
Arrays N & P are more easily interpreted by setting up the following table:
Table 3.

loops numbered higher than J that
do not touch loop J

4

5 .

5,7,8
~5,6,7,8

7,8

7,8

loop J

O N A N W

The sequence for producing the higher ordexr loops is as follows:

loop 1

loops not touching loop 1 are inserted
into first row of S (see Table 3)

array : Output

no 3rd order loops

i-

array ‘ ' Output

no 3rd order loops

-26-

loop 3
§ array . Output
. ‘
5 7 8 O
0

.loop 5 does not touch loop 7
or loop 8 (this {s determined
by comparing loop codes--see

V gection 1I-4)

7 80

’ loop 3+loop 5°+loop 7

loop 3+loop S5+loop 8

SO0 o

0
0
0

e ———
O O Ne U!l—
QO™

| loop 7 touches loop 8; thus,
there is no 3%¥4 row. Further
if the pointer of row 1 is
incremented by 1, no new 2%
row can be created. Thus, we
are done with loop 3.

, v
“loop 4

S ‘array Output
5 6 7 8

0 0 0o o

loop 5 does not touch loop
47 or loop 8

i ’ ,
5 6 7 8 ‘ loop 4°loop 5°loop 7
J - loop 4<loop 5-loop 8
7 8 0O .
0 0 0O
0 000 O

there is no 3Y¥d row. Incre-

loop 7 touches loop 8; thus,
. ment pointer of row 1.

-27-

6 does.not touch loop
loop 8

[~}

loop a'lodp 6°loop 7
loop 4*loop 6°loop 8

(= = I o)

menting pointers give

no additional third ovder

¥
5 6 7
¢ 0O
lloop
7 or
¢
5 6 7
4
7 8 0
0 0 0
0 0 O
incre
loops
loop 5

array

S
{
7 8 0.
0

iloop

J/loop

loop 7

S array

(o]

Output

. . . no 3rd order loops
7 touches loop 8
Output
0 , | no 3rd order loops
4
7 touches loop 8
Output

no 3rd order loops

Output

no 3rd order loops

-28-

III. USER'S GUIDE

I1I-1. Information Needed by User

Program: SNAP (Symbolic Network Analysis Program)

v VvV I I
Purpose: To obtain the network functions™ VOUL, IOUt, Vout’ or out as a
in in in in '
ratio of two polynomials of the following type:

(L) allinetwork element values are represented by symbols (the symbols

need not all be different),

Vout szLRC
Examples: =7

Vin s 2LRC + s(L+R2C) + R

Vout ' ZYR
V., 2
in 2ZYR + Z + R'Y + R

(2) some element values are specified numerically, some symbolically,

out szR
Example: =

Vin s22R + s(.5x10° + 1508%) + .75x10°R

(3) all element values are given numerically,

2
out S

Example: =
Vin 2s% + 2x10%s + .75x10°

Description:' Program SNAP is designed to handle lumped, linear, time invariant
networks** containing the following type components:
(1) two-terminal circuit elements -- resistance, inductance, and
capacitance.
(2) two-terminal networkg described by an admittancé or impedance

parameter.

*
Refer to Appendix A at end of this section for a technique of handling

multi-output functions.

Kk
See Appendix B for a brief list of additional limitations on the size and

type of network allowed.

-29-

(3) .all four types of controlled sources (Note: Mutual inductance,
ideal transformers, gyrators, etc., can be modeled with elements
in (1) and (3)) |

(4) one independent source; see Appendix A for a technique of handling

.multi-input networks.

.Network Data Required: After the network components have been modeled by the
type elements allowed, the branches and nodes are to be numbered consecutively
starting with 1 and.reference directions for each branch current are to be |
chosen. The following gives the sequence of data cards needed to describe

the network.

CARD 1
Columns _ - Contents
1-72 Title card (all 72 columns are reproduced in output)
CARD 2
Columns Contents
1-5
(right) Number of nodes in the network
ad justed
6-10
(right) Number of branches in the network
adjusted

The following three entries are optional.

11-15
(right) Number base of symbol codes (automatically set to 8 if left
adjusted blank)
21 1 if a description of the SFG is to be listed, blank otherwise
22 1 if all loops (circuits) in the SFG are to be listed (node

sequence), blank otherwise

Columns

1-5

(right
adjusted

6-10

(right
adjusted

11-15
(right)
adjusted

16-20
(right)
ad justed

Note 1: Each card describes one network branch (element).
Note 2: 1If output is a voltage (current) associated with a particular branch,
then the data card describing this branch should be entered first

(last) among the branch data cards (cards 4 thru (b+3)) to insure

Network branch number of source

Network branch number associated with output (leave blank

-30-

CARD 3

Contents

if output is a voltage across more than one branch)

Node number corresponding to the positive output voltage
terminal (these columns can be left blank if columns 6-10

are not blank)

Node number corresponding to the negative output voltage
terminal (these columns can be left blank if columns 6-10

are not blank)

CARDS 4 thru (b+3)

(b = number of network branches)

that this branch will be chosen as part of the tree (cotree).

Note 3: When a large number of branches share one common terminal, it is
better to place these branches first starting with card & (card 5

if note 2 applies).

of this section.

Columns

1-2
left
ad justed

()

Element type;

Contents

voltage source
current source

conductance
resistance
inductance
capacitance
impedance
admittance

current controlled
current controlled
voltage controlled
voltage controlled

The reason is given in Appendix C at the end

source
source
source
source

Continued
Columns
3-5
right

adjusted)

o«
6-10
right

adjusted

()

11~-15
right

(adjusted

)

17-19
(right)
adjusted

20

21-32
right
adjusted

()

33-35
right

(adjusted

-31f

Contents
Element number--all elements of the network must be assigned
a distinct number (positive integer). For greatest efficiency,
the numbering should be consecutive.

4

Initial node--this is relative to the arbitrarily chosen \
current direction.

Terminal node--this is relative to the arbitrarily chosen

current direction.

Element symbol--the element's value, if not specified, is
represented by this symbol.

Equal sign (=) if element is to be assigned a value. Leave
blank if element value is to be represented in symbolic form.

Element value‘(if known)--Format is E12.5. Units should be
compatible with element type as specified in columns 1-2; for
example, R is expressed in ohms, G in mhos,

If element is a dependent source, enter the element number of
its control.

-32-
1

An Example: We wish to find OUt/Vin, Keeping Al, A2, and C as symbols,
- - +V
RI=5K§ C‘J- lC Rl=58K
" [re=isk T
Lout

Al | A2
RE =25\ A/ é RE = 25

%nox

FIGURE |. ORIGINAL NETWORK.

|<+

0] $RE

r
|
|
|
|

FIGURE 2. MODELED NETWORK.

-33-

DATA DECK

R 11 5 1 R3= 10.E3

R 10 2 5 RE=¢5,

R S e 5 RE=25.

cc 8 4 282 9

cc v 3 @2 at R £ 1

R 6 3 4 Re= 15,E3

c 4 1 4 ¢ -

R 5 1 4 Ri=' ~ ~ S5,E3
t 3 1" 3 ¢ : '

R 2 1 3 Rl= S.E3

1% i 2 1 o)

‘ 1 6

5 11 11

PR E R e S DIFFERENTIAL,QMPLIFIER PR IARY

phpunGcopGRN i n] trf AGDRDGGRNEGH

googesLodgaLdees "”109“0’“ Uﬁ”ﬂ"ubLOHUOBUOLPUP'GFDUUOUUOPDOPUUCDDGWOCBC(Cﬁ'Tﬁq?ij
13345678 S sy 12323308 IR AN IR 1 L LENARYES ECE T YA ST AR TR T I RN SR P R TR EN R [
IIHIIIIH]II]H!|llwlnllHllllH1111Hl||]HllllHlllHlllIHllllHll]ll‘ll

TABLE 1. 1Input Data as Reproduced in Program Output.
teedoaaoedFFERENTIAL AMPLIFlER®#atntboue

NUMBER OF NODES= §

NUMBER OF BRANCHES= 11

ELEMENT NUMBER OF SOURCE= 1

ELEMENT NUMBER ASSOCIATED WITH OUTPUT= 6
BASE FOR SYMBOL CODES= 8

NE TWORK
ELEMENT ELEMENT INITIAL TERMINAL ELEMENT ELEMENT ELEMFNT NO,
TYPE NUMBER NODE NODE SYMBOL VALUF OF CONTROL
E) ' 2 1 =0 -0
R 2 1 3 Rl= 5,00000€¢03 =0
c 3 1 3 C =0, -0
R 5 1 4 R1= S5.00000F¢03 =0
C 4 1 4 C -0, -0
R 6 3 4 R2= 1.50000F«04 =0
cc 7 3 2 al -0. 10
CC 8 4 2 A2 =0 °]
R 9 2 5 REz 2.50000F¢01 =0
R 10 2 5 RE= 2.,50000F«01 =0
R 11 S 1 R3= 1,00000f904 =0
TREE SELECTED
E 1 2 1 -0 =0
R 2 1 3 R1= 5.00000F¢N3 =0
R) 1 4 Rl= 5,00000F+03 =0
R 9 2 5 RE= 2.50000F+01 =0 -

TABLE 2. Program Output Information Showing Signal-Flow‘Graph,

-34-

Circuits, and Execution Times.

INITIAL TERMINAL EXPONENT

NODE NODE
6 1
2 3
3 2
5 4
4 5
2 6
6 2
5 6
6 5

10 7
7 2
9 12

12 8
8 5
9 10

10 9
9 11

11 9
1 11

OF

OO O OO0 DODODOOODOO= OO

S

SFG

BRANCH
VALUE
=1.00000E+00
1,00000E«00
=5,00000E+03
1.00000E+00
=5,00000E¢03
“6.6666TE=DS
S,00000g203
6.6666TE=NS
«5,00000E+073
1,00000E+00
S§,00000E+03
4.00000E°02
IoOOOOOEQOO
5600000E«03
4000000E=07P

=2e50000E+0]

=1,00000E=04
2¢50000E+01
1,00000F=04

TIME FOR FORMULATING SIGNAL

B8RANCH
SYMBOL

FR

C
R1

o
R1
R2
R
R2
R1
Al
R)
RE
A?
1
RE
RE
R3
RE
rR3

} IF SYMBOL

IS INVERTED
0

e O, C OO T OO, O

8 FIRST ORDFR LOOPS

FLO¥ GRAPH IN SECONDS *252
CIRCUITS
NO, . NODE LIST
1 111 912 8 § 6 1
4 111 910 7 2 6 1
3 2 6 2
4 2 3 2
5 4 5 4
6 5 6 5
7 9 11 9
8 9 10 9
TIME FOR FINDING
IN SECONDS 0046
TIME FOR FINDING 19 SETS OF
NONTOUCHING LOOPS, IN SECONDS

TIME FOR DECODING SYMBOLS IN SECONDS

«027

124

1 1F SYMBUL
IS USED

DO ODOD O DO ODOD D e O e

-35-

TABLE 3. Network Transfer Function and Total Execut®on Time.

-

Qﬁﬂ&#&@ﬁﬁ#ﬁé@@6695G#%ﬁQ%ﬁﬂ@&@0%##*6###*0#&6#@&&“%%

' NUMERATOR POLYNOMIAL ST T
= (5333331107 + 1666675 C)(Ad-A1)

COLUMN SYMBOL FOR GIVEN COLUMN
1 AP / 1
2 Al / 1
3 C A2 /7 1
4 c Al /1

POWER

OF S CONSTANT COfFFS. IN THE POLYNOMIAL
COLUMN 1 COLUMN 2 COLUMN 3 COLUMN &
0 3¢33333E=05 »3,33333E=05 0o 0
1 0 Oe 1¢66667F=01 “)o6666TE=N1
2 0. 00 00 0.

%G&G“Qﬁ###%ﬁ#@@#”#ﬁ#ﬁ%%*##d##*ﬁﬁ%*b#ﬁ%ﬂ%%&Q#&&&&Q#

DENOMINATOR POLYNOMIAL
7 Z
= 53375+ 2.L7x10T5C + 5. 00ca510"s2(C

COLUMN SYMBOL FOR GIVEN COLJMN

1 - 1 / 1

2 c /7 1

3 - cun2 /]
POWER ‘ _ _ o .
oF § " 'CONSTANT COFFS, IN THE POLYNOMIAL

COLUMN 1 COLUMN 2 COLUMN 3 CO{ UMN

0 3.33750E+00 De Oe

1 0. 2067000E¢04 0

2l 00 00. R5.00625F¢07
EXECUTION TIME IN SECONDS, +509

AUGUST 1970 VERSION OF SNAP

-36-

APPENDIX A
A Sorting Technique for Handling Multi-Ihput, Multi-Output Networks.

Multi-Inputs

Program SNAP (the August 1970 revision) permits only one independent source
branch. However, networks containing more than one source can easily be
handled with the following technique. Let Wi i=1,2,...,n represent a set of
n independent sources, either voltage or current. Assign wl-as the permitted

independent source and make wz, w3,...,wn dependent sources which are dependent

on w1 with proportionality factors

=

2
1

k, = respectively'

2 » ky =

3 RS

W
W n

= ‘uz
= |

1
Only the numerator polynomial in the output will contain these parameters thus

permitting the user to easily put the output function into the form

wout) P1 + P2k2 + P3k3 +...t Pnkn
A
Wl] \
where & and Pi i=1,2,...,n are polynomials. The output function can then

be written

;) le1 + PZWZ 4.0t inn A -
out A (

Although at present SNAP does not give the output function in the form of
Eq. (1) directly, only a few program modifications are necessary to effect such
a result. For example, the program could internally create a new input node,

1 ,» of the SFG and then make each independent source, Wi, dependent on In

new ew

with weight Pi as shown in Fig. 1 below.

-37-

Figure 1

Multi-Outputs

The following technique can be used to obtain more than one output function
in a single computer run: Augmént the original network by appending one end
of a Series connection of dependent voltage sources go the given network such
that

(a) to each branch current, I,, desired as an output, there corresponds

j’

a dependent voltage source which depends on Ij and has symbolic weight

Ioj’

and (b) to each voltage desired as an output, there corresponds a set of the

YaB

dependent voltage sources each dependent upon a voltage across one
of the branches in the path between nodes A and B and all having

symbolic weight VOAB'

By specifying the output to be the voltage across the entire series connection of

dependent voltage sources, outputs Ij and VAB will be those output terms which

contain Ioj and VO respectively. Only a few modifications of the present

AB

version of SNAP would be necessary to have the program internally perform the
network augmentation described above (at present, the user must do the augmenting).
As an example, Fig., 2 illustrates the network augmentation needed to find

the voltage V

14 and current I, for the gjiven bridge network in one computer run.

5

-38-

Figure 2.

-39-

] *and3no
9y3 UT SUOTIIEUIqWOD Joquis 3JU3IIIITIP
0G1 ueBy3l aI0W OU UTIBJIUOD uUed JYNS eyl

pa3jtwxad sjoquis
3aom3isau 3IDUTISTP JO aaqunu

3OBJ 9Y3 WOAI SI[NSII UOIIDTIISAI STIYJL 1 wWNWIXew 9yl JO I3ewIlsy
*SJUBWAT3 SAIIOEBIL ¢ uBYyl Ia1ow s Jo
ou 3UTUTEIUOD SHIOMIIU I0J JUIIDTIING <1 sismod 3uU3133IIP JO aaquny
*Z paed ejep 3Indut 3yl uo ‘¢ < u ‘,7 10quAs swes ayj
03 pasn aseq 9pod joquis ay3y Jursesaourl £q pajuasaadax =q ued eyl
Aq 1-,2 ©3 poseaiIdul aq ued Iaqunu STYJ, L S1UDWAI3 JO I9qunu WNWIXEK
*jIomiau 3yl Jo IzZIs 3yl
JTWIT ISY3IANI UED MIJ B 2WEU 03 SToquis
jaomiau jo asqunu pue ‘(aydwexs 103
‘sdooy x9apao ao2y81y jO avqunu) SOTIST
-J1232eIBYD 9HJS ‘SUOTIBISPISUOD 2WII SE
yons s103583I A3Yl) °SSOT 10 sayoueiq ¢
‘Butaey sdaomiau [Ie a[puey jouued JYNS ‘ G¢ saysuel1q MIOM3IdU JO Iaquny
(uoIsaaAa QL6 Isnany UO) SHIeWIY TUOTSI?p - 0l61 ‘Tasndny
IUOTSIAIA

peMOTTY MaomiaN Jo 9dA] pue 92T§ 9yl UO SUOTILITWIT JO ISTT Io31ag V

g xTpuaddy

-40-

APPENDIX C
Selecting a ""Good'" Tree

The network tree used to generate the SFG has a vefy significant effect
on the number of loéps and higher order loops present in the SFG. The
loop epumeration and evaluation, in turn, often determines the time and
storage needed by a coﬁputer to solve a given network. The ladder network
of Figuré 1 together with Table 1 illustrated the interrelationship between
the-tree selected, the number of loops (all orders), computer execution

time, and computer storage.

e
’ﬁz i
TN
17 /} Vo
ﬁf =
Table 1
Tree Branches Number of Number of Time required to find V /I
loops higher order : ° s
loops
Star tree: 1,3,5,7,9, 17 2567 - 1.55 seconds
11,13,15,17
1,2,4,7,9,11,13,15,17 38 8096 3.93 seconds
1,2,4,6,9,11,13,15,17 117 19719 9.42 seconds
1,2,4,6,8,11,13,15,17 476 - -

(storage for first
order exceeded)

Unfortunately, choosing the ''best" tree, that is, a tree which will
minimize the number of loop combinations of all orders is a very involved

process. See reference 2 and 7 for a detailed discussion of this problem.

41-

For most networks, however, a tree that-will result in a reasonable amount
of execution time and computer storage can be selected by applying one

of the following rules (rule 2 results in a better tree than rule 1)

Rule 1: Select a tree in which as many branches as possible form a star,
that is, the branches share a common node. Modify this tree, if necessary,
to include any branch which has two or more branches in parallel with it.
Rule f: Let T be_some tree (not necessarily the best) of the network

k

graph. For each link li of the graph, define B£ as the number of tree
i
branches which form a circuit with Ei. Then form the sum

where L = number of links in the graph having Tk

as a tree.
“Select that tree, say Tj; which satisfies the inequality
S ; S k=1,2,...,N where N = number of trees
The example given in section I1I-1 uses a tree, Tj’ having ST. =11,

The tree generated internally by program SNAP includes ail voltage
sources together with those passive branches read in first (starting with
input data card 4) which complete the tree., Thus, to have SNAP select
the-tree that has been chosen by the user, it is neceésary that the user's
tree include all voltage sources and that all its passive branches be

listed first starting with input data card 4.

-42-

I11-2. Modifying the Dimension of Arrays

In order to make SNAP applicable to many different type networks, a flexible
~ yet simple procedure is needed for modifying the dimension of the arrays. For
example, storage requirements for networks containing many symbols will be
determined by the number of symbols, symbol codes, etc., yhereas the storage
needed for networks having no symbols will be determined by the number of loops,
nontouching loops of all orders, and related network characteristics. Because
it is not possible to determine apriori reasonable bounds for all the network
characteristics, error diagnostics have been built into the program to inform
the user as to which arrays have been inadequately dimenSiéned. As a result,
the technique for adjusting the array dimension, in SNAP can be outlined as
follows:

(1) Check that those network characteristics which can be determined before
running the program are within the specified limits. These limits are
listed following the dimension statements of the main program for
convenient reference. |

‘(2) Run the program. If an array dimension is exceeded an error message will
result which specifies the netyork characteristic involved. For examplé,
if the SFG of a given network has an excessive number of circuits, the
message '""No. of circuits exceeds limit--increase dimensions containing
NPAC" will result. The definition of NPAC (number of paths and circuits)
are found immediately following the array dimensions in the main program.
It is important to point out that a computer run may continue to completion
even if the dimension of some arrays have been exceeded (an error message is
still given, however). 1In this situation, the results cannot be considered

reliable,

(3)

-43-

Once it has been ascertained by (1) and (2) that dimension modifications

are iﬁ order, refer to the next few pages to determine the arrays asgociated
with the network characteristics of interest. Increase the dimension of
all the arrays indicated by say 20% (several runs may be necessary to
achieve adequate prograﬁ dimensions). Then update the value of the
parameter (NPAC, for eﬁample) corresponding to the network characteristic
involved. This parameter is used throughout the program (as limits on

DO loops etc.) thereby making it unnecessary to do any additional program

modifications,

NBN = Number of Network Branches (Presently 35)

PROGRAM MAIN

IG(NBN), KODES (NBN), KODE (NBN,NBN)
SMBOL(NBN), KONC(NBN), IXPO(NBN,NBN)
IFLOW(NBN), N(NBN,NBN), CONS(NBN,NBN)
LT(NBN), NP (NBN),
SUBROUTINE SFG

JROW (NBN), TYPB(NBN), IQUALX(NBN), JBX(NBN)
NP (NBN), JB(NBN), VALX(NBN) , LBX(NBN)
IVV(NBN), LB(NBN), NUMLX(NBN) , IB(NBN, NBN)
NUML(NBN) , MSYM(NBN), INTRE(NBN), NS (NBN, NBN)
ICV(NBN), IQUAL(NBN), NOTREE(NBN), NF(NBN,NBN)
INTREE(NBN), VAL(NBN), TYPX (NBN) ,
LINC(NBN), SYM(NBN) , NUMX (NBN) ,

SUBROUTINE FTREE
TYPX(NBN), INTRE(NBN), NF(NBN,NBN)
JBX(NBN), NOTREE (NBN) ,
LBX(NBN) , NP (NBN)

SUBROUTINE TREP
JX(NBN), JMEM(NBN), NF(NBN,NBN)
NP(NBN), KMEM(NBN)

A

NBG = Number of Branches in SFG (Presently 100)

PROGRAM MAIN

NFIRST(NBG), SYMBUL(NBG), NEST(NBG)
NLAST(NBG), MIX(NBG), TYPE (NBG)
IXPON(NBG), CVAL(NBG),
WEIGHT(NBG), KONSO(NBG),

SUBROUTINE SFG
NFIRST(NBG), MAPY(NBG), SYMBUL(NBG)
NLAST(NBG), KONSO(NBG), MIX(NBG)

IXPON(NBG), NEST(NBG), CVAL(NBG)
WEIGHT(NBG), TYPE(NBG),

NPAC = Number of Paths Plus Circuits (Presently 300)

PROGRAM MAIN

CONST(NPAC), MAPO(NPAC), JAC(NPAC)
KODET(NPAC), NOCTOT(NPAC), NPCODE (NPAC)
IXPOT(NPAC), NUP(NPAC),

-45-

NTO = Number of Terms in Output (Presently 150)

PROGRAM MAIN
NA(NTO), POLYU(NEXPS ,NTO), SEMPON (NTO ,NSPT/ 2)
NB(NTO) , POLY (NEXPS,NTO) , SEMPOD (NTO,NSPT/ 2

KSORT(NTO), SIMBON(NTO,NSPT/2),
ITOP (NTO) , SIMBOD (NTO,NSPT/2)

SUBROUTINE ARRAY
KSORT(NTO), POLY(NEXPS,NTO)
SUBROUTINE DECODE

ITOP (NTO)

NSPT = Number of Symbols per term in Output (Presently 20)
PROGRAM MAIN

KONS(NSPT), KODF(NSPT), SEMPON(NTO,NSPT/2)
KODI(NSPT), SIMBON(NTO,NSPT/Z) , SEMPOD(NTO,NSPT/2)
SEMBOL(NSPT), SIMBOLD(NTO,NSPT/2),

SUBROUTINE FTIREE
KCOL(NSPT)

SUBROUTINE DECODE

SEMBOL(NSPT), KODF(NSPT), KODI (NSPT)

-46-

NEXPS = Number of Different Powers of s (Presently 15)

PROGRAM MAIN
MSORT(NEXPS) ,POLYU(NEXPS,NTO) , POLY (NEXPS,NTO)
SUBROUTINE ARRAY
MSORT(NEXPS),POLY(NEXPS,NTO)

NRI = Maximum Number of Nontouching Loops (Presently 15)

PROGRAM MAIN
ISET(NRI,NCI)

NCI = Maximum Number of Loops Nét Touching any Given Loop (Presently 100)

PROGRAM MAIN
ISET(NRI, NCI)

NEON = Number of Nontouching Paris of Loops {(Presently 1200)

PROGRAM MAIN
NOTCH(NEON)

NRS = Number of Repeated Symbols (Presently 9)

PROGRAM MAIN

STAR(NRS)

-47-

IV. PROGRAMMER'S GUIDE

IV-1. Definitions

CONS(JeL)=WELIGT (I} FOR BRANCH T OF THF SFG WHERF
J= FIRST(4) s L=NLASI(I)
CONST (1) =COMPOSTYTE CUNSTANT aSSOCITATEN wiTH CIRCUIT T. IT 1< FOIND KHY
TAKING THE PRODUCT OF THE CONSTANT VALUES OF EVERY SFG RRANCH
IN CIRCULY T
CVAL (NUMC) =VALX (LINK) #HERE NUMC=NUMX (LTINK)
(USED OnLy FOH NETWURK BRANCHES NOT IN THE TREF)
TR(LFoJF) =18 (JF o LF) aNUME WHERE JF=JB (NUMC) AND [F=L8B(NUMC)
AND NUMC [S A NETWOKRK [REF BRANCH NiUMHEW (ASSIGNED RY (JIGFR)
IFLOW(K)SA FLAG,FNR THE PURPUSE OF CHFCKING WHETHER NODF K 1S DFPFATFH
AND WHETHEK THE LAST NODE IS REACHED
TG(L)=SYMBOL COpk ASSIGNED T THE SFG BRANCHES BAVING
TERMINAL NAUF L
INTRF(K)=Te THL T=Tr NFTWORK BRANCH TN THE UATA BHAMCH LIST TS
CHOSEN AS THE K=TH HKRANCH OF THF NETWOKRK TREE
INTREF (MUMC) 2] tF THE NETwWORK BRANCH NUMHERFU NUMC BY TRE nsgq 1<
SELFECTED FUR THE TREEs 0 DTHERWISE
TQUAL (NUMC) =T0OUALX () WHERE nNUMC=NUMX(T)
(USED ONnLy FOR NETwWORK TREF BRANCHFS)
TQUALX(IY=FEQUAL STGBN({=) TF [=TH NFTHORK KKANCH IN THF OATA RAANCH
LIST HAS A NUMERICAL VaLUEs LEFT HBLANR IF JeTH RRAMCH 1§
T0o RE REPRESENTED BY A SYMBOL
ISET(Je 1) =THF INTFGER ARRAY wHICH TOGFTHER wWITH THFE ARKAY NOTCH Can
HE USED T FIND ALL SETS OF NONTOUCHIMNG LOUPS OF ORDFR GREATFR
THAMN 2
TTOP(JC)Y=1 IF Tut TERMS IN COLUMN JC OF THE ARRAY POLY RELONG TO
THE NUM4FRATOR OF THE OuTPUT TRANSFER FUNCTIONe 0 1F THFY
HELONG 10 THE DENOMINATOR '
TVV (M) aNFTWORK gRanCH NUMBER OF THE M=THW VOLTAGF CONTHOLED
VOLTAGE SAURCE IN THE DATA RRANCH LIST
IXPO(JsL)Y=TXPON(I) FOR BHANCH I OF THF SFG WHERF
JNFIRST (L) s L=NLAST ()
TXPON(T) =2FXPONENT OF S ASSOC(ATED WITH THE VALUF OF THE SFG RRANCH 1
TXPOT(I) =COMPOSTIF EXPONENT OF S FOR CIRCULIT I, 1T TS FOUND BY ADDING
THE S POWEKS ASSOCIATEL WITH EACH RRANCH In CIRCUTT v
JAC () =NUMKHER OpF NONZERO ENTRIES IN ROW . OF ISFT
JRBINUMCYy = JHX (1) wHERE NyMC=NMX{T)
{HISFD ONLY FOR NETwWORK TReF BRANCHFS)

-48-

JRAX(I)=INTTIAL NODE OF THE I-TH NEFTWNARK BRANCH IN THE DATA
RRANCH LI>1

JMFM(I) =2THE ROW OF THE ROUTING MATRIX FROM WnICH THE I=-TH NODF
IN THE PATH SEQUENCE wAaS TAKEN

JROW(LF)=THE NULBER OF NUN=ZERO ENTRIFS IN ROW LF OF THE ARRAY NF

JX{(T+1)=NP(])

KBASTS=NUMHER BASE OF THE SYmBoL COUFS, THAT [Ss THF SFG CONTATINS KOO
DISTINCT SYMBOULSs SEMBOL(K) ¢eK=192P5s0etk009 NOT INCLUNTINAG THF { AV
VARTABLE <¢ WHERE SEMBOL(K) IS ASSIGNED THE CODE KBAGIG##K

KHOL=COUNTER USED TO FIND THF NUMRER 0OF [LOUPS OF QRDFR 2 OR ARFATER

KIKeA ROw COUNTgk OF THE MATRIX POLY

KMEM(I)=THE CoLyMN OF THFE ROUTING MATRIX FROMm wHICH THF 1=TH NODFE
IN THE PAYH SEWUENCE wWaS TAKEN

KODE (JoL) =CODE REPRESENTING THE SYMBoL 0F THE SFG HRANCH HAVING
J AS AN INITIAL NODE AND L AS THE TFxrMINAL NODF

KODES(J)=2%# (J=1) WHEREJ IS A NODF OF THWF SFO

KODET(I)=COMPOSITE CODE ASSOCIATED WITH CIRCUIT [e THIS CODE RFPRFSQEN
THF SET OfF SYMHOLS CORRESPONDING TO THE SET OF QFb HRANCHES
CONTAINED IN CIRCUIT I

KODF (NZ) IS THE MULTIPLICITY 0OF THE SYMBOL CUORRFSPONNDING To THE
CUDE KODT (NZ)

KODT(NZYsNZ=192%e009017 IS THF SET OF TNDIVIDUAL SYMSGL CODES THAT
MAKE UPRP Twk CUMPDSITE CONE KSORT(JZ)

KONC(J)=C0LUMN cOUNTER FOK ROW J OF THE ROUTING MATRYX N{J.X)

KONS(KOZY)=1 IF THE SYMROL HaAVING CONF KOZY 1S MOT AN INVERSE Qymun| A
0 TIF THE gET OF SYMBOLS CORRESPONNING T0 Trt COMPASITF cODFE
KSORT (J) nELONGS YO THE DENOMINATOR POLYNOmMIAL

KONSO(TI)Y=1 IF SYMROL OF THE SFG BRANCH T=SYMBUL(1)y 0 IF SYMROL OF
THE SFG BRANCH I=1/SYMUL(T)

KSNRT (K)Y=THE CODE ASSIGNED TO COLUMN K oF THE MATRIX POLY

LRINUMC)=LBX (1) WHERE NUMCs=nNuMX (1)

{USED OnNLy FOR NETWOKK TReE BRANCHFS)

LBX(I)=TEFRMINAL NODE OF THE [=TH NETWNORK RHANCH |IN THF nATA
RRANCH LIgl

LIL=A COLUMN COUNTER OF THE MATRIX POLY

LINC(NUMC) =] IF Trk NETWORK HRANCH NUMBFRFU NUMC BY THE USFR 1§ MNT
IN THE TRfFEsy 0 OTHERWISE

LIST=NUMRER OF DIRECTEN wsRANCHES IN THE SFG

LISTE=]1 IF ALL ~IRCUITS OF THE FG ARE TO BE LISTED IN THF PRINTOUT,
0 OTHERWISE

"LISTG=)Y TF SFG INFORMATION(SRANCH SYMROLSWWELIGHTS ETC.) ARFE TN RF -
LISTED IN THE PRINTOUTs 0 OTHERWISE

LISTP=]l IF ALL PATHS FROM NODE NIN To NODE NUUT RRE TO RE LISTED 1M
THE PRINTAUT: 0 DTHERWISE

LT(J)eNUMBER OF FOSITIVE ENTRIEg IN ROW J OF N(JeK)

MAPO (NIRP)ISNOCTOTINIRP)«NNCTOT(NIP=]1) WHICH EQUALS THE NUMRFR OF
LOOPS NOT TOUCHING LOOP NIP

MIX(1)=MAPRPING nF THE SFG BRaANCH LIST INTO A LIST SATISFYING ONF OF
THE FOLLOWING CONDITIONS o
NFTRST(J) ,GToNFIRST(K) FOR JeGT,K

: OR NFIRST(J)=NFIRST(K) ¢ NUAST(J) LT«NLAST(K) FOR JoGToK

MSORT(K)=THE EXFPONENT OF S ASSIGNED TO ROW K OF THFE MATRIX PoLY

N(JeK) e WHERE Kzls2seeesl.T(J)s IS THE TERMINAL NUDFE OF . SFG QRANCH
HAVING J AS ITS INITIAL NODFe THE VALUE OF FACH NONZERO EMTOY
IN A GIVEN ROW 1S MADE TU DECREASF AS K INCREASES, THF ADDTTION
ENTRY N(NyNoLT(NIN}¢l)=e]l IS ALS0 MADFE

nNA (J) =NUKBER OF SYMBOLS(NUT COUNTING INVEWSE SYMSOLS) [N TWF
CODE KSORT (L :

NR () sNUMRER OF INVERSE SYMBOLS IN THFE CODE KSQOR) (J)

NCIR=]1 TF CIRCUITS ARE TO BE FOUNDs AND 0 IF CIRCUITS ARE NOT Tn
RE FOUND

-49-

NEGT(T)=1 IF THE SFG BRANCH 1 CONTAINS & SYMBOL IN ANDITION Tn THF
[LAPLACE VARTABLE Se¢ 0 IF THE SFG RARANCH [CONTAINS NO SYMROL
EXCERPT POSSTBLY FOR THe LAPLACE VARTARLE S

NF (LF s JROJ) =RUOUTING TARLF FOR THE NETWORK COMPOSEDL ONLY OF
BRANCHES RELONGING TO [HE TREE

NFIRs1 IF PATHS ARE TO BE FOUNDINFIR SET TO 1 IF LISTP=1), anNn 0 IF
PATHS aARE NOT TO RE FOUND

NFIRST(IV)=INITIAL NODE 0F THr DIRECTEN SFG HRANCH 1 ' :

NIN=NETWORK RKANCH NUMBER OF THF SOURCE. THIS RECOMFS THF SQURCF NODF
OF THE SFo

MLAST(T)=TERMINAL NUVE OF THE DIRECTEN SFG BRANCH T

NOR=NUMBEFR OF BrRANWCHES TN NEJWORK

NOD=NUMBER OF NADES IN NETWORK

NODA=0 UNLESS OuTPUT IS A VOLTAGE TAKEN ACROSS MORE THAN ONF NETWNRK
FLEMENT, IN THIS CASE 1T DFIGNATES THE POSITIVE TERMINAL OF .

4 THF. OUTPUT VOLTAGE

NODR=0 UNLESS OUTPUT IS A VOLTAGE TAKFN ACKOSS MORE THAN ONF NFTWNORK
FLEMENT, IN THIS CASt I+ DESTGNATES THE NEGATIVE TFEFRMINAI
O0F THE OUTPHIT VOLTAGE

NOL=NUMBER OF CIRCUITS(LOURPS)

NOP=NUMBER OF PATHS FROM NODE NIN TO NODF NOUT IN THF SFG

NOUT=NETWORK HRANCH NUMBER ASSOrTATED WITH THE OUTPUT (VOLTARGE ACRNSS

' OF CURRENT THRE) o THIS gECUMES THF SFG NODE CORRESPONNING Tn I
OUTPUT vAplaglLE

NOTCH(NDC) AND nOCTOT(K) e CONSIDER THE INTEGER SET
(I)=(1629,c09N2) WHERE N2=NUMBER OF NONTOUCHING PAIRS 0OF |.O0OPS,
NOW CONSIUER THE FOLLOWING SUBSET OF (1),

SIDZ(NOCTOT (Kel) ¢ LoNOCTOT (K1) 42000esNOCTOT (K)Y) WHFRF
NOCTOT(0) =0, ITHEN ITHE SET (NOTCH(JYs J IN S(I1)) IS THF SET OF
LOOPS THATYT DN NOY TOUCH LOOP K

MOTREF (T)=1 IF Thy [=TH NETWORK BRANCH Ih THE DATA LYST IS CHNASEN
FOR THE TREEs 0 OTHEKRWISE

WP (T)Y=THF NODE QEQUENCE OF A PATH BETWEFN NOLE NIN AND NODE NNAUT ,
NF THE SFue [F NIN=NOUT THTS IS THF NODE SEQUENCFEF FAR A CIRCHIY

NPCODE (K) =COMPOSLITE CODE UYSED TO TUENTIFY CIRCUTIT 1e¢ FOUND RY SHMMING
THE CONES, XOUES(J)s ALLOTED To FACH NODEs Jy TN THE CTRCUTT

NUME (NUMC) =NUMLA (1) WHERE NUMCsNUMX(T)

(USED ONLY FUR NETSORK TREE BRANCHFS)

MS(LFeJF) =1 [F ThHE NETWORK TREE BRANCH TH(LFeJF) HAS INTTIAL NODF
LF AND TERMINAL NODE Jr aAND EQUALS =1 IF THE NFTWORK TREFE
BRANCH HAq INITIAL NODe JF AND TERMINAL NOUE LF

NUMLX(T)e IF T=lrn NETWORK HB<ANCH IN THE DATA BRANCH LIST 1S a
NEPEMDENT SOURCEs THIS ARRAY EQUALS THE NETWORK HRANCH NUMREQ
ASSIGNEL TO ITS CONTROL

NUMX(T) =THE NETWORK BRANCH NUMRER ASSIGNED BY THE USF) TO THF T=TH
NETWORK HpAnCH IN THE uvATA RRANCH L 1ST

MUP (J) DESTGNATES THE LOOPY»ISET(JeNUR(J))e OF ROW J WHICH TS NOT
TOUCHEND BY THE LOOPS ENTEREN IN ROwW J¢l OF ISET.

POLY (Ksl)=MATRTY (iF CONSTANTS WHERE EACH FENTRY TS ASSOCTATFD WITH A
TERM IN Tyt WUMERATOR OR DENOMINATOR QUTPUT POLYNNMIAL
HAVING THe S POWER OF K AND THF SYMHMOL CODE ASSIGNED T COLUMN L

POLYU(KsL)=MATHKIA OF CONSTANIS WwHERE EACH ENTRY [S ASSOCIATED WTITH a
TERM IN THE NUMFRATOR OF THE OHTPUT POLYNOMIAL HAVING THE € POWF
OF K AND Tht SYMROL CODE ASSIONFD TNH CULUMN L

SEMROL (KO)=SYMBAL CORRESPONDING TN THE CODE KBASIS## (KO=1)

SEMPON(J19J2)Y eJn=1925eacoNATIL)Y s AND SEMPOD(J1sJ3) $J321920 .04 ¢« NB(.1])
BRE RESPECTIVELY THE MULTIPLICITY OF THE SYMBOIS
SIMROUN(J] 4J2)9J2=)se0enO(J1) 9 AND STMBOO(J19U3)sJ32 1 see, s NR(1T)

SIMBON(J10J2) 9J2=132900e9NA(J1) s AND SIMROU(JL19d3) ¢J321¢29c0eoNR(.}T)
ARE RESPECTIVELY THE SYMBOLS AND INVERSE SYMHOLS CORRESPANNDIMG
TO THE symoulL CODE KSORT (g1}

-50a-

SMBOL (KY=SYMRUL (1) FOR THE SFG BRANCH I WHERE TaMIX(K)
STAR(I) =] THIS ARRAY IS GENERATED FROM DATA STATFMENTS AND IS
US DO IN FURMING THE ARRAYS SEMPON AND SEMPOD
SYM(NUMC) sSYMX (1) WHERE NUMC=NUMX (1)
(USED ONLY FOR NETWORK YREE BRANCHFS) : .
SYMRUL (1)=SYMRBOL ASSOCTIATED wITH THF VALUE OF THE SFG BRANCH T
SYMX (1) =SYMBOL (37 CHARACTERS aT MOST) ASSIGNEL BY USER Tn THE TeTH
NETWORK BRANCH IN THE DATA BRANCH LIST. THE EIEMENTS VALUF,
IF NOT SPeCIFIED IS REPREGENTED BY THIS SYMBOL
TYPR(NUMC)=TYPX 1) WHERE NUMCeNyMX (1) o
(USED ONLY FOR NETWORK TRFE BRANCHES)
TYPE (NUMC)STYPX(LINK) WHERE NUMCaNUMX (LINK)
(USED ONLY FOR NETWORK BRANCHES NOT IN THE TREF) -
TYPX(I)=SPECIFI&S THE ELEMENT TYPE OF THE I«TH NETWORK RRANCH
IN THE DATA BRANCH LISfs (MUST RE EeIoGoeRoLICoCCHCVeVCenNR VV
AND MUST BE COMPATIHBLE WITH THE UNITS OF ThHE ELEMENTS VAL UFE)
VAL (NUMC)sVA[X (1) WHERE NUMC=NUMX(I)
(USED ONLy FOR NETWORK TREE BRANCHES)
VALX (1) 2ELEMENT VALUE(E12e5) OF loTH NETWORK BRANCH TN THE DATA
BRANCH LIgT .
WEIGT(I)=CONSTANT TERM ASSOCIATED WITH THWE VALUE OF THE SFG RRANCH 1T

-50b-

IV-2,. Flow Charts
Program.SNAP_is divided into the following sectiomns:
Program MAIN (éubprograms 1 thru 12)
Subroqtine SFG (Subprograms A thru J)
Subroutine FTREE
~ Subroutine TREP
Subroutine ARRAY
Subroutine DECODE
As indicated above, program MAIN is further broken down into 12 subprograms

and subroutine SFG is divided into 10 subprograms.

-51-

Subprogram MAIN-1

This program reads in some preliminary network data.

Read in

(a) problem name

(b) NOD, NOB, KBASIS, LISYG,
LISTC, LISTP, NIN, NOUT,
NODA, NODB

Set KBASIS to 8 1if a zero valve

has been read in.

Write out the above information

for reference purposes.

To Subprogram MAIN-2

-52-~

Subprogram MAIN-2
This progrsm generates the SFG routing matrix, creates a code for each
symbol (excluding s), and sets up arrays for the comnstants and powers of

§ asgsociated with the branch weights.

Call subroutine SFG.

Transfer the following data into
subroutine SFG: NIN, NOUT, NOD,
NOB, LISTG, NODA, NODB.

(see subroutine SFG for additional
data read in)

Subroutine SFG returns the following
information to program MAIN-2:

LIST, WFIRST(I), NLAST(I), IXPON(I),
WEIGT(1), SYMBUL(I), KONSO(I),
NEST(1), MIX(I), I = 1, LIST

-53-

!

MG = KBASIS#*KG
initially MG=1

5! IBO = IBO + 1
307 initially IBO = O

i/

305 —>

all breanches
have been
evaluated

<<: | Compare \\ 1EO > LIST

IBO to LIST ///

1BO < LIST

LOB = MIX(IBO)
J = NFIRST(LOB)
L = NLAST(LOB)

L

LT(J) = LTQJ) + 1

N(J,LT(J)) = NLAST(LOB)
After the J = row is completed set

0 J#NIN

N(I,LT(J)+1) = -1 J=NIN
The mapping LOB = MIX(IBO) reorders.
the SPG branch 1list so that (1) the nonzero
entries of a given row of the routing matrix
N(J,I) decreases as I increases and (2) the
Jth roy 1s completed before elements are
entered into the J+18L row.

j

CONST(J,L) = WEIGT(LOB)
1XPO(J,L) = IXPON(LOB)
where - J = NFIRST(LOB), L = NLAST(LOB)

)

'r:ol

Subprogram
HMAIR-3

-54-

‘SMBOL(IBO) = SYMBUL(LOB) 307
Test \, T
< NEST(LOB) / KODE(J,L) = 0
=() .
a] | SFG branch LOB
SFG branch LOB does not contain
contains a a symbol
symbol 307
Test \\L_ '
IG(L) KODE(J,L) = IG(L)
where L = WLAST(LOB) ;1
A code has
=0 - already been
- assigned to
branches entering
node L
W
KP = RP41

Initially KP=0

Compare

952
' 307

Compare \\\
SMBOL(IBO) to
SMBOL (KP) / ot l
equal
equal

KODE(J,L) = IG(LX)

/ V\\¥ equal
&KONSO(LOB) and KONSO(LOBX))

vhere LOBX = MIX(KP)

not equal
the symbol associated
with branch IBO is the
inverse of the symbol

not
equal Compare
KP to IBO-1

equsal

><———— 952

LX = NLAST(LOBX)

associated with branch KP

2®

SFG branch LOB
contains the

symbol
1

SEMBOL(K0O)

305

~55-

MG = KBASIS * MG
(Initially MG = 1)
IG(L) = MG
KODE(JL) = 1IB(L)

Initially KOO = O

KOO = KOO + 1

SEMBOL(K0O) = SYMBOL(IBO)

This establishes a direct correspondence
between a symbol and its code
SEMBOL(KOQ) <=3 KBASIS**KOO

KONS(K00)=1

=] 4 Test
KONSO(LOB) SFG branch LOB
contains the

symbol
SEMBOL({K00)

5
KONS (K00) =0 l

305

Subprogram MAIN-3
This program codes the nodes of the SFG, and prepares the counters for finding

all paths and/or circuits.

Set POLY(J,K)=0, J=1, NEXPS; K=1,NTO
MSORT(J)=0 , J=1, NEXPS
KODI(J)=0 , J=1, NSPT
KSORT(J)=0 , J=1, NTO

IR=1, NFIR=1, KNO=0

Code node JS of the SFG as follows
KODES (JS)=2*KODES(JS~1)

JS=2, NNG
where KODES(1)=1

TEST Write out
LISTP NIN & KOUT
| i %
Prepare to 23
find cirecuits (8ubprogram MAIN-4)

thru node 1

N[NIN, LT(NIN)+1J=0
N1, LT(1)+1 -1
NIN=1

NOUT=1

KLAS=0

\!

MFIR=0 e —— 24

I

To Subprogram MAIN-4

This program finds all paths.from node NIN to

. =57-

Subprogram HAIN-4

of -the SFG.

Preliminary (PFl-1)

IFLOW(I1)=0 I1=1,NNG
I1=1,NNG

KONC(1I1)=0
NOP=KLAS
KLAS=0

I =2

23

V2

Preliminary (PFi-2)
JX{1)=NIN

Jo=WIN

NP(1)=NIN
IFLOW(NIN)=l

IFLOY (KOUT)=-1

| K = KONG(J)

v

25

PF2(FIND NEXT RODE)
NP(1)=N(J,K)

[\

<0

found.,

v node.

100
(Subprogram MAIN-5)

All loops thru

& particular node
Go to
subprogram HAIN-5 to
eliminate this

\\\ N(J,K)

/// PF3
(TEST ROUTING MATRIX)

‘>0

34

continue to
flower check

All paths out of
=0 node J checked,
. Return to
previous node

IFLCOH(J)=0
KONC{(J)=0
J=RP(1-2)
KONC(J)=RORC(J)+1
I=1-1

node NOUT and/or all circuits

25

25

PF5

(Prepare for
next node)
set
IFLOW(J)=1
Isl+l

-58-

L34 Flower formed
_¢) ~try a new
: path out of

node J

25

/N

PF4 > 0
(TEST FOR FLOWER)

- TEST
\ IFLOW (N(J,K)]

=()
Node J
acceptable
<0
Node J is the
final node
PF7
(Loop Completed)
(1)

@

Find the composite code for the circuit
node list. :
I-1

Z KODES [NP(15)]
IS=1
Find composite code, exponent, and
constant associated with branch weight.

NPCODE (IR)=

1
KODET(IR)= & KODE[NP(KEW-1),NP(REW))
KEW=2

1
I CONS [NP(KEW-1),RP(KEW)]
KEW=2

CONST(IR)=

I
"IXPOT(IR)e I 1XPO([NP(KEW-1),NP(KEW)]

KEW=2

a

Set CONEW=CONST(IR),IXNEW=IXPOT(IR),KONEW=KODET(IR)
CALL ARRAY (1,CONEW,IXNEW,KONEW,POLY,LIL,KIK)

)

25
4~

IR=1R+1

Look for
another loop

'
i

~59-

Subprogram MAIN-S

This program determines if circuits are to be found and if so modifies

the SFG by eliminating node J.

R e
4
find paths | =0 \ NCIR i\
Only paths '
i’ between =] The user has (:ngfgiram
STOP - nodes NIN specified that
and NOUT circuits be forwmed
to be listed Write out time
to find paths,
TEST Set
NFIR /_, N{1,LT(1)41)=-1
) RIN=]
=0 Paths have been | NOUT=1
found - circuits
thru node 1 are .
to be found
] Write out
TEST
=] time for
NIN°£E5§J/'A11 circuits] finding circuits
<0 found
All circuits thru node J ' To
have been found. The SFG _ Subprogram
must be modified by eliminating MAIR-6
node J from the vouting table.
NIN=J+1
NOUT=J+1
NI, LT()+1 0
Test last nonzero entry in each row of
N(I1,12). .1f this entry equals J sget
N(11,12)=0
and LT(I1)=LT(I1)-1
23
(Subprogram T
MAIN-4)

NININ, LT(RIN)+1 Je-1

-60-

Subprogram MAIN-6

This program finds and stores all an order nontouching léops

N
Set

NOCTOT(K1)=0 Kl=1,NPAC
LOOP(M1)=0 Ml=1l,NNG

DO 203 LIR1=NOP<1,NOL-1

DO 202 LIR2=LIRI+l, NOL

\V
sAND+ together the node code
for loop LIR1 and the node code

for loop LIR2
NAN=NPCODE (LIR1) .AND .NPCODE(LIR2)

A Loop LIR2 touches
TEST \#0 loop LIR1
NAN !
=0 202

Loop LIR2 does not
touch loop LIR1

TCONS2=CONST(LIR1)«CONST(LIR2)
KXPO2=IXPOT(LIR1)+IXPOT(LIR2)
KSYM2=KODET(LIR1)+KODET(LIR2)

7
CALL ARRAY (2,TCONS2,KXP02,KSYM2,POLY,LIL,KIK)

'

increment
LIR2

-61-

increment

T LIR1

End of
202 Do loop
ROC=NOC+1
NOTCH(NOC)=LIR2

The following defines arrays NOTCH and NOCTOT:
Consider the integer set

{1}={1,2,...,82}
vhere N2 = number of nontouching pairs of loops
Now consider the following subset of {I}
{1, }= {NOCTOT(R-1)+1,NOCTOT(K-1)+2, . . . ,NOCTOT(K) }

Then the set
{NOTCH(J):Je {18]}

is the set of loops that do not touch loop K

End of
203 DO loop

NOCTOT(LIR1)=ROC

- -62-
Subprogram MAIN-7

This program finds all nontouching loops of order greater than 2, and
stores the associated code, power of s, and constant term.
The matrix ISET is given below in its general form to aid in understanding

the flow chart of subprogram MAIN-7.

ISET(I,I)ISET(I,Z)---ISET[I,NUP(I)]°°'ISET[1,JAC(1)]
ISET(2,1)ISET(2,2)++-ISET[2,NUP(2) J*--1SET[2,JaC(2)]

ISET(KAP,1)ISET(KAP,2)«+ +ISET[KAP, NUP(KAP)]+« ISET [KAP, JAC(KAP)]
ISET(KAP#, NUP (KAP+1) Jos -

where ISET(J,1), I=1,2,...,JAC(J)

is the subset of
{rsez(3-1,nUP(3-1)+1],15ET[3-1,NUP(J-1)+2],...,1SET[I-1,JAC(3-1)]}

which does not touch the loop

ISET[J-1,RUP(J-1)]

e —

-63-

DO 490 NIP=NOP+1,NOL

Generate the first row of ISET
as follows:

ISET(1,1)=NOTCH [NOCTOT(NIP-1)+1]
ISET(1,2)=NOTCHNOCTOT(NIP-1)+2]

1SET{1,JAac(1) J=noTCH [NOoCTOT(NIP)]
The first row of ISET i2 seen to be
the set of loops which do not touch
loop NIP

Set JAC(K)=0

NUP (K) =0 } K=1,NPAC

. All higher orvder
loops not touching
loop NIP have been
found

v

RAP=2
[EAP is the row
ounter of ISET
i
KAP=KAP-1 e 440

[}

£0 TEST
RAP RAP=KAP+1

NUP(KAP)=0 [< 425

>0

490

JAC(KAP+1)=0
NUP(KAP)=NUP(KAP)+1

429

-64-

ISAT=1SET(KAP,RUP (KAP))

/

DO 435 MAPI=NUP(KAP)+1,JAC(KAP)

L

+AND, together the node code of
loop ISAT and the node code of
loop 1ISOT
KAN=NPCODE (I1SAT) .AND ,NPCODE(ISOT)
where 1SOT=1SET(XAP,MAPI)

\f'

TEST \#0
=) ¢

=0 loops ISAT and 435
1S0T do not touch
W
Find comstant, code, and exponent for
the nontouching loops of order KAP+1 just
found.
KAP
TCONSG=CONST(NIP)*CONST(ISOT)* Tl CONST [ISET(L,NUP(L))]
L=1
KAP)
KSYMG=KODET (NIP)+KODET(ISOT)+ & KODET[ISET(L,NUP(L))]
L=1
‘ KAP
KXPOG=1XPOT (NIP)+1XPOT (1SOT)+ Z IXPOT[ISET(L,NUP(L))]
. L=1

v

CALL ARRAY (KAP+2,TCONSG,KXPOG,KSYMG,POLY,LIL,KIK)

-65-

435

nd of
loop

Update column céunter of row KAP+1
of ISET and ingert the last loop

ISET (KAP+1,JAC(KAP+1) J=ISET (KAP,MAPI)

< JAC(RAP+1) -2 /

<0

¢

425

<JAC (KAP) -NUP (KAP) -1 /\

Row KAP+1 of ISET
has now been found
and it has more than
1 non-zero entries.
Thus, procede to
find the entires

of row KAP+2.

429

\> 0 - T

<0

increment
MAPI
e found into ISET
JAC{KAP+1)=aJAC(KAP+1)+1
TEST
TEST
440
A~

Row KAP+1 of ISET

has now been found

but it does not contain
more than one non-zero
element. Further, all
loops of row KAP have
been exhausted. Thus,
it is necessary to

back up one rovw and
re-evaluated row KAP

Row KAP+1 of ISET
has now been found
but it does not
contain more than
one non-zexro entry.
Since not all loops
of row KAP have been
exhausted, increment
NUP(KAP) by one and
re~evaluate row KAP+1

-66~

Continue Incr nt

490
End of
DO loop

NIP

CALL ARRAY (2,1.,0,0,POLY,LIL,KIK)

Print out number of loops found and
time required in seconds.

To Subprogram MAIN-8

-67-

Subprogram MAIN-8
This program decodes composite codes representing nontouching loops and

sets up tags for use in printing out the symbolic transfer function.

Set
~ POLYU(J1,J2)=0 Ji=1,REXPS; J2=NTO

SEMPON(J3,J4)=STAR(1) “\
SEMPOD(J3,J4)=STAR(1l)
SIMBON(J3,J4)=SB
SIMBOD(J3,J4)=SB
RA(JS)=0 } -
NB(J5)=0 J5=1,NTO
SB and STAR(1) are cobtained from "data" statements

J3=1,NT0; J4=NSPTU

DO 646 JZ=1,LIL-1 2
(LIL-1 different composite symbol codes
.-have been found in Subprogram MAIN-7)

.

KODY=KSORT(JZ)
1TOP(JZ)=0

=() TEST
\, KODY /
There i3 no symbol

associated with this >0
value of JZ

646

-68-

CALL DECODE (KOO,KBASIS,KODY,1Z,FB,JZ,SEMBOL,KODF,
KODI, ITOP)
This subroutine (a) sets
1 if terms having the code KSORT(JZ)
ITOP(JZ)= {0 belong in numerator of output polynomial
' if terms belong in denominator
(b) f£finds the set
KODI(1), I=1,1Z
where SEMBOL [KODX(1)], I=1,1Z are the corresponding
set of symbols, and
(¢) finds the multiplicity of each individual symbol,
SEMBOL {(KODE(1)], and records these values in the
array KODF(1), I=1,12

DO 645 NZ=1, 1Z

-/

=0 ,// TEST \\L =1
TN KONS[KODI(NZ)]A//
The symbol corresponding The symbol corresponding
to KODI(NZ) is not to be to KODI(KZ) is to appear
inverted in the output inverted in the output.
t iceo
1
| SEMBOL[RODI (KZ) J
H .
. | NAR=NAR+1 NAT=NAT+1 -
N SIMBON(JZ,NAK)=SEMBOL [KODI (NZ)] SIMBOD(JZ,NAT)=SEMBOL [X0DI(NZ)]
SEMPON(JZ,NAK)=STAR [KODF(NZ)] SEMPOD (JZ,NAT)=STAR[KODF(NZ)]
W
NA(JZ)=NA(JZ)+1 - NB(JZ)=NB(JZ)+1

-69-~

increment
N2 [ggd of
T 645 loop
continue
[ggd of

increcment 646 roer
JZ

. 4
/r continue =

Vv

Subprogram MAIN-9

646

...70-

Subprogram MAIN-9

This program separates POLY into the arrays POLYU and POLY for use
in printing out the constant terms of the transfer function.

v
DO 755 JA=1,KIK-1
There are KIK-1 rows in POLY
(KIK-1 different powers of s)

DO 755 JC=1,LIL-1
There are LIL-1 columns in POLY
(LIL-1 different composite symbol codes)

The entry =0 TEST =] The entry POLY(JA,JC)
POLY(JA,JC) TN ITOP(JC) - _ belongs in the
belongs in numerator of the
the denominator transfer function
of the transfer
function
JIB=J1B+1 JD=JD+1
POLYUUA,JIB)BPOLY(JA,JC) POLY (JA,JD)=POLY(JA,JC)
[ggd of -
1\ 755 loop
Continue .
Increment JC
until JC=LIL-1
then {ncrement JA

Print out time for
decoding symbols

A2
Subprogram MAIN-10

-71-

Subprogram MAIN-10

This program normalizes the transfer function so as to have all

positive powers of s

DO 522 KAR=1, KIK-1

>0

522

>0

/ TEST >
 MSORT(KAR)
<0

The power of s corresponding
to row KAR of POLYU or POLY
is negative

522

522

/ TEST >
WIFH—MSORT(KAR)

<90

MAXIM is to be the
absolute value of the
most negative power of s

MAXIM+-MSORT(KAR)

[ggd of
loop d.
322 increment

l KAR

Continue

Using MAXIM make powers of
8 either positive or zero.
i.e. '

MSORT (K) =MAXIM+MSORT (K)
Kml,Z,. . o,KIK"l

Subprogram MAIN-11 , -

-72-

Subprogram MAIN-11

VWirite out the matrix of constant coefficients for the numerator polynomial
of the transfer function. Also write out the syrbols and 8 powers that

correspond respectively to the columms and rows of the array of constants.

Subprogram MAIN-12

Write out the watrix of constant coefficients for the denominator
polynomial of the transfer function. Also write out the sywbols and s
powers that correspond respectively to the columns and rows of the array of

constants.

-73-

Subroutine SFG(NFIRST,KLAST,IXPON,WEIGHT, SYMBUL,RONSO,MIX,NEST,LIST,NIN,
NOUT, KOD, NOB, LISTG, NODA, KODB) ' '
This subroutine generates a signal flow-graph (SPG) for the given network.

The program is subdivided into subprograms A thru J.

. FA
Subprogram "A"

This program uses DATA statements to define certain varisbles, nulls

arrays, createg the SFG feedback branch, reads in network branch information

!

and calls FIREE to find a tree.

Use DATA statement to define the following
variables: Y,G,C,1Q,R,CL,Z,E,CI,CC,CV,VV,
VC,FB,ONE.

/

Set §§§§2:§§;:g } IC=1,NNG; IK=l,NNG
NEST(IG)aoo}
KONSO(1G)=0) 1C=1,NBG
INTREE(I1)=0) __
JROW(11)=0 J 11°1,NNG
. MO=0,L0=0,LIST=1, LINK=0

Create SFG feedback branch used to make
the SFG '"closed".
NLAST(1)=NIN
IXPON(1)=0
WEIGT(1l)=-1
SYMBUL(1)=FB
KONSO(1)=0
NEST(1)=1
Note: HNFIRST(l) is determined in Subprogram "I1"

V/

-75-

L

Read in the following network branch
information:
TYPX(1) ,NUMX(1),JBX(Y),LBX(I),SYMX(1),
IQUALX(I),VALX(1) ,NUMLX(I)

1=1,NOB

V%

Choose a tree of the network for

use in finding the SFG

CALL FTREE(TYPX,JBX,LBX,INTRE,NOTREE,
NOD,NOB) '

v
¢
i
i

v
Subprogram ''B"

-76-

Subprogram ''B"

This program sets up tree branch information and creates a routing

matrix and sign matrix for the tree.

\2

DO 21 NU=1,NOD-1

Put network tree branch information in terms
of the branch labels specified by user.
Let IO=INTRE(NU) ,NUMC=NUMX(IO)
Then TYPB(HNUMC)=TYPX(I10)
JB(NUMC)=JBX(10)
LB (MUMC)=LBX(I0)
SYM(NUMC)=SYIMX(I0)
IQUAL (NUMC) sIQUALX(I0)
VAL(MNUMC)=VALX(10)
RUML (NUMC) =NUMLX(10)
INTREE (NUMC)=1

WRITE TYPB(NUMC),NUMC,JB(NUMC),LB(NUMC), ‘
SYM(NUHMC) , IQUAL(IWUHMC) , VAL (NUMC) , NUML (NUHC)

\
: Compare .EQ. HO=MO+1
TYPB(NUMC) to VV IVV(¥D)=NUMC

.NE.
‘Compare \\; .EQ. LO=LO+1
TYPB(NUMC) to CV‘// ICV(LO)=NUMC

.NEO

Increment
NU

-77-

;

IB(JF,LF)=NUMC
IB{LF,JF)=NUMC

The following generates a routing
matrix, NF, and a sign matrix,
NS, from the chosen network tree
for use in finding the SFG

/

JF=JB(NUMC)

LF=LB (HUMC)
JROW(JF)=JROW(JF)+1
NFJF,JROW(IP) J=LF
NS[JF,LF }1
JROW(LF)=JROW(LF)+1
NF[LPF,JROW(LF) J=JF
NS{LF,JF }s-1

End of

21 loop
\/ [} A
|

Continue ‘

Subprogram "'C"

. -78-

Subprogram "'C"

This program generates SFG information from branch node to link node.

L

‘ NES=0
NOBY=KOB
All passive network branches
together with VC and CC type
- 3 . sources have been converted
151 Continue to SFG variables. Now all
' . CV and VV type sources wust
TEST \\fo be accounted for.
KLU-NOB l
<90 360
» Subprogram "G"
LINK=LIRK+1
Inicially O
;L.
_ TEST \ =1
ﬁOTREE(LINK)/)—————-—
=0 Network branch

NUMX(LINK) is
not in tree

user.

JR=JBX(LINK)
LK=LBX(LIKK)

Put network link information in terms
"of the branch labels specified by

Let NUMC=NUMX(LINK)
then TYPE (NUMC)=TYPX(LINK)

SYM(NUMC)=SYMX(LINK)
IQUAL(NUMC)=IQUALX(LINK)
CVAL (NUMC)=VALX(LINK)
NUMB=NUMLX (LINK)

LINK(NUMC)=1

This records which network branches
are not in the tree.

!

-79-

KDEPS

KAKRSC=0

=0

+.EQ. L

I1¥PS=-1
KANSO=1

|

v

123

EQ.
IorE

123

i
EQ. Gor Y l;EQ. Rer 2 lEEQ. Cc
/ .
1XPS=0
IEPg=1 RANSO=1 1Xps=l
123 123 123
\ A
KDEPS=]1
Y/
TEST \ .EQ. VC
TYPE(NUKC)) ‘
) \I/165
.EQ. CC Subprogram "E"
1265
123 Subprogram "P"
CALL TREP(JK,LK,NF,NP,NPL)

TREP find the path in the
netvork tree vhich foxms
a circuit vith the link FUNMC.

IFIR=NUMC

LON=LOR+1

Counter LOU will {mcrecent overx
the nurber of trvee branches
contained in the fundorental
circuit defimed by the link NUMC.
For each trce branch in this list,
a SPG branch will be forwmed froa
KUHC to the givenm tree branch.

-80-

L

IRIT=1B [P (LON) ,Np(wml)]
SIGR=NS [NP(LON) , NP (LON+1)]

D

169
[;ree branch INIT Subprogram ''D"
8 pasgive
COMPARE
NESol
A -
IQUAL(?gLC) end COMST=SI N
EQ.
etworh bramrech
KC has no symbol
CONST=SIGII*CVAL (UMC)
W
LIST=LIST+1 <
TEST =()
RES /
=]
\
KEST(LIST)=1

Specify all branch inforwmation for LIST
KONSO (LIST)=KANSO

NPIRST(LIST)=IHIT

HLAST(LIST)=1FIN

SYMBUL(LIST)=SYM(IFIN)

IXPON(LIST)=1XPS

RONSO(LIST) >“—-‘—>-mxmr(usr) CONST

al Link weight is given in
iopedance units and thus
eust be inverted.

y

WEIGHT(LIST)="*/CONST

12

MAPY (I1TUHMC) =LIST

v

Subprogram ''D"

-82-

Subprogram "D"

This program generates SFG information from link node to branch node.

TEST .EQ. E,1,VV, or CV

TYPB(INIT) /
o i

1 .NE. E,I,VV, or CV 201
LIST=LIST+1
!
TEST
TYPB(INIT)
.EQ. R or Z .EQ. C .EQ. L J.EQ. G or Y
|1xrou(LIST)so[IXPON(LIST)=-1| IXPON(LIST)=1 | 1XPON(LIST)=0 |
KONSO(LIST)=1 KONSO(LIST)=1 |
N
- IQUA£??§;§§ ‘o KB REST(LIST)=1]
1q WEIGT(LIST)=-SIGN
.EQ.

| =-SIGN*VAL(INIT)

WEIGHT(LIST) {"

WEIGHT(LIST)=~SIGN/VAL(INIT)

-83-

|

NFIRST(LIST)=1FIN
NLAST(LIST)=INIT
SYMBUL(LIST)=SYM(INIT)

NPLA=NPL-1-LON

, 149 : . 151
Subprogram "C' - : Subprogram "C"
O ' . : . ‘
[- =1 TEST <0

NPLA

-84 -

Subprogram "E"
This program sets up SFG information for VC type control sources.

165 NUMB was found from
NUMB=NUMLX(LINK)

Thus, RUMB i{s the branch
number of the control
for the VC type source.

The network branch whose 161
- voltage ie the controlling
variable for the VC source
is not in the tree. Thus a

new node must be created in

the SFG to represent the
voltage controlling variable.

Create 8 SFG branch from node
NUMB (current thru controlling
network branch) to mew node
ROBY (voltage across controlling
netvork bremch)
LIST=LIST+1
RFIRST(LIST)=NUMB

- initially
NOBY=NOBY+1 (NOBYBNOB)
NLAST(LIST)=NOBY
SYMBUL(LIST)=SYM(KUMB)

NUNO=NOBY

-85~

HEIGHT(LIST)nl'/CVAL(NUMB) ’

KONSO(LIST)=1 k

LIST=LIST+1 k 161

Using the newly created
SFG node representing

the controlling voltage,

a SFG node can now be
generated for the dependent
current source

ST
TYPE (WUMB)
.EQ. Yor G +EQ. C NE, | EQ., L
) . / Y,G,C,L] |
IXPON(LIST)=0 IXPON(LIST)=-1 : (L.e. .EQ. IXPON(LIST)=1
KUKRO=1 KUNO=1 to Ror Z) KUNO=0 l
IXPON(LIST)=0
KURO=0
IQUAg?ggggf o \\\ | NEST(LIST)=1
10 /// NE. WEIGHT(LIST)=1, |
EQ Network branch
M NUIB contains
branch NUMB : a symbol
is impedance !
type :
a() TEST .
\. KUNO
WEIGHT(LIST) v
= CVAL(NUMB)

123
Subprogram "C"
A

'\

-86-
NFIRST(LIST)=NUNO
NLAST(LIST)=NUMC

SYMBUL (LIST)=SYM(NUMC)
IXPON(LIST)=0

|

K

WEIGHT(LIST)=CVALU

.EQ.
COMPARE
<[QUAL(NUMC) to 1}> ' i

+NE.

Network branch
NUMC contains
a gymbol

NEST(LIST)=1
WEIGHT(LIST)=1.,

-87~

Subprogram "F'

This program sets up SFG information for CC type control sources.

265
¥

The structure of subprogram "F' is I
completely analogous to subprogram "E". l

, v
123 Subprogram "C"

Subprogram "G"
This program sets up SFG information for VV type control sources.

360

\A

This program {s cycled over all voltage
controlled voltage souxrces in the network.
A list of these sources is maintained in
the array "
IVW(MI) ,MI=1,40
Other than the above, the structure of
subprogram "G" is completely analogous to
subprogram "E".

460 Subprogram "H"

-88-

Subprogram "H"

This program sets up SFG information for CV type control sources.

This program i3 cycled over all

current controlled voltage sources

in the network. A list of these

sources is maintained in the array
ICV(M1),MI=1,L0

Other than the above, the structure

of subprogram "H' is completely
analogous to subprogram "E"

.V'
- 515 Subprogram "1"

The SFG i8 now
complete except

for the output
node,

-89-

Subprogram 1"

User has specified that
output is between nodes
NODA and NODB of the
network, The SFG output
node NOUT iz made &
function of the tree
branch voltages existing
in the path between NODA
and RODB.

515

o

This program generates the output node of the SFG.

< TEST
NOU? / #0

=0

User has specified
output be across a
particular network
branch. Thus, NOUT
is already known.

v
514

CALL TREP

(NODA , NODB, NE, KP, NPL)

NOUT=ROBY+1

DO 510 ¥OP=1,KPL-1

!

LIST=LIST+1 |
510 |End of

y

loop

Generate a SFG branch between node
1B [NP(1OP),NP(X0P+1)] and NOUT
NFLRST(LIST)=1B [NP(40P),NP(MOP+1)]
NLAST(LIST)=}OUT
SYMBUL(LIST)=ONE
IXPON(L1IST)=0
KONSO(LIST)=0
NEST(LIST)=0
WEIGHT(LIST)=NS [NP(140P) , NP(:OP+1)]

|

-90-

514

|

NFIRST(1)=NOUT
This is the initial node of
the SFG feedback branch

=0 / TEST

N\ LISTG)

=]

Write out the following SFG
informationm:
NFIRST(J) ,NLAST(J),IXPON(J),WEIGHT(J),
SYMBUL(J) ,KONSO(J) ,NEST(J)

J=1,LIST

Continue

. \/
Subprogram "J"

-91-

Subprogram "J"

This program orders SFG information for input to msin program. That
is, a mapping function MIX is fourd which reorders the SFG information so
that the routing matrix N(J,K)las calculated in MAIN will automatically

have 1{its entrigé decrease as K increases.

J

SET MIX(J)=J J=1,NBG ’

DO 80 KON=1,LIST-1 ‘

TU=KON+1
{ IL=KON
K- 83
: TEST
i’ = \\\NFIRST[MIX(IU)]QNFIRSTEMIX(IL)] >,6*“":L
89 g : 80
—— <0 ' '

[:iX(IU) and MIX(IL)
B st be interchanged

MXL=MIX(IL)
MIX(IL)=MIX(IU)
- MIX(IVU)=MXL

89

-92-

L

IL=1L~1
1U=IU-1

: g

=0/ mst\ >0

83

J

L 7

TEST

<0

>0

MIX(IU) and

".z\msr Max(Iv) J-NLAST BIX(IL)] /

MIX(IL) wust be
interchanged .

MXL=MIL(IL)

MIX(IU)=MXL

MIX(IL)=MIX(1U)

l
1

IL=IL-1
IU=IU=-1

~

>0 82

=0

\NFIRST[MIX(IU) J-NPIRST [MIX(IL)]

)

-

#0

Continue

|V
>

80

80

-93.

Subroutine FTREE(TYPX,JBX,
LBX, INTRE ,NOTREE ,NOD,NOB)

This program finds a tree of the network to use in generating a SFG.

v

Rull the arrays
NF(12,13),KCOL(14),ROTREE(I5)

5 o Isi+l
' — Initially I=0 '

TEST
TYPX(I)

#E,VV,o0r CV
. ‘ This branch
must be put
into the tree

TS

=E,VV, or CV

l ' Kﬁk;l e 16

INTRE(K)=1
NOTREE(I)=1

The branch just selected for the tree
wmust now be included in a routing matrix.
This matrix will be used later to test
passive network branches for use in the
tree,

NF[JBX(I),KCOL(JBX(I)) F=LBX(I)
NF[LBX(I),KCOL(LBX(I)) J=IBX(I)

TEST (
<K-NOD+1 /20 [Tree filled] S

<1 . 22

! L The 1ist of network branches

i ' = Q are still being examined for

! 5 b —m—) voltage sources

| . <0 </ TEST ':> All voltage sources have been

} . | I‘NOQ"*J | ;2ose:. The 118t of network
ancnes are again examined and

, Passive network branches = O the necessary number of passive

I” are now being considered ' branches selected

12 \L 12V

-94 -

12

MeMt-1

initially M=0

y branch
TEST not passive
TYPX(M)

=R,G,L,C,Y, or Z

Y

A passive branch has been
tentatively accepted for the
tree. It is now necessary
to go to the path finding
subroutine TREP to see 1if

the branch just selected will
oo form a loop

CALL TREP

\ N
#0 msi‘—\

.
NPL)

Branch forms a] =0 10
loop-not acceptable I
‘I=M ' R

The passive branch
just selected for
the tree must now be
entered into the
routing matrix

.lZZ

Continue J

'
g Return ‘

-95-

Subroutine TREP(NIN,NOUT,NF,NP,NPL)

Given the routing matrix for the network tree with input and output nodes

specified, this subroutine finds a node list representing the path between

these two nodes.

l

Preliminary

JX(15)=0
NP(15)=0
JMEM(15)=0
KMEM(15)=0 _

., NPL=0,JX(1)=JX(2)=NIN,

Set
I5=1,NNG

I=1,J=NIN,NP(1)=NIN

S

o

25 ——-—m--—a{ Kek+1

20 -

AN
TEST

=0

Path
finished

, <NF(J ,K)-NOUT /
#0
2 :

=0

- TEST =0
\ NF(J,K) |

>0

A\
TEST

[Flover

J NF(J,K)-JX(1)
AN |

#0

)

formed)

45

(Flower éheckj '

50
TEST \ =0
J-NIN J/
#£0 100

Stop
v no path
60 found

[(Backstep]

20

-96-

25
A

Store and remember vertex
I=]+1

NP(IL)=NF(J,K)

JMEM(I)=J

JX(I+1)aNF(J,K)

J=NF(J,K)

KMEM(1)=K

Backstep
J=JMEM(I)
K=aKMEM(I)
I=1-1

7

\

‘'Final path vertex and
path length o
. NP (I